Ultrasound and Doppler parameters as potential predictors of perinatal mortality in late-onset fetal growth restriction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Objective: This study aimed to investigate the relationship between ultrasound and Doppler parameters and perinatal mortality in late-onset fetal growth restriction (FGR).

Materials and methods: This cohort study was conducted at the perinatal center of the Arkhangelsk Regional Clinical Hospital between 2018 and 2022, using non-random sampling. A total of 314 women with suspected FGR who met the inclusion criteria were included in this study. The relationship between perinatal mortality and ultrasound and Doppler parameters was assessed using multivariate Poisson regression analysis. Unadjusted and adjusted risk ratios (RR) with 95% confidence intervals (CI) were calculated. A backward stepwise elimination was used to construct the most parsimonious model.

Results: Late-onset FGR was detected in 111 cases (35.4%), of which 17 (15.3%) resulted in perinatal death. Of the 12 potential predictors included in the model, only five were selected for the final Poisson model (pseudo R2=0.44). Gestational hypertension (GH) (RR=9.3; 95% CI: 3.2–26.6), cerebroplacental ratio (CPR) (RR=10.9; 95% CI: 3.6–32.8), varicose veins of the lower extremities (VVLE) (RR=13.0; 95% CI: 3.75–45.2), and uterine artery pulsatility index (UAPI) (RR=1.2; 95% CI: 1.0–1.5) were associated with an increased risk of perinatal death, while oligohydramnios was associated with a decreased risk (RR=0.4; 95% CI: 0.2–0.9).

Conclusion: Gestational hypertension, varicose veins of the lower extremities, impaired uterine artery blood flow, and altered cerebroplacental ratio on Doppler ultrasound are associated with the risk of perinatal death in late-onset FGR, whereas oligohydramnios is associated with a decreased risk. Larger multicenter studies are needed to create valid predictive models with sufficient sensitivity and specificity for use in clinical practice.

About the authors

Elizaveta A. Shcherbakova

Northern State Medical University, Ministry of Health of Russia

Email: Liza140395@rambler.ru
ORCID iD: 0000-0001-6297-4415

PhD Student at the Department of Obstetrics and Gynecology

Russian Federation, Arkhangelsk

Natalya G. Istomina

Northern State Medical University, Ministry of Health of Russia

Email: nataly.istomina@gmail.com
ORCID iD: 0000-0001-9214-8923

PhD, Associate Professor at the Department of Obstetrics and Gynecology

Russian Federation, Arkhangelsk

Aleksei N. Baranov

Northern State Medical University, Ministry of Health of Russia

Author for correspondence.
Email: a.n.baranov2011@yandex.ru

Dr. Med. Sci., Professor, Head of the Department of Obstetrics and Gynecology

Russian Federation, Arkhangelsk

Andrej M. Grjibovski

Northern State Medical University, Ministry of Health of Russia; Northern (Arctic) Federal University; North-Eastern Federal University

Email: andrej.grjibovski@gmail.com
ORCID iD: 0000-0002-5464-0498

Doctor of Medicine, Head of the Division for Research and Innovations; Chief Researcher at the Arctic Biomonitoring Laboratory; Professor

Russian Federation, Arkhangelsk; Arkhangelsk; Yakutsk

References

  1. Министерство здравоохранения Российской Федерации. Недостаточный рост плода, требующий предоставления медицинской помощи матери (задержка роста плода). Клинические рекомендации. М.; 2022. 76с. [Ministry of Health of the Russian Federation. Insufficient fetal growth requiring maternal medical care (fetal growth restriction). Clinical guidelines. Moscow; 2022. 76p. (in Russian)].
  2. Martins J.G., Biggio J.R., Abuhamad A. Society for Maternal-Fetal Medicine Consult Series #52: diagnosis and management of fetal growth restriction: (replaces Clinical Guideline Number 3, April 2012). Am. J. Obstet. Gynecol. 2020; 223(4): B2-B17. https://dx.doi.org/10.1016/j.ajog.2020.05.010.
  3. Coenen H., Braun J., Köster H., Möllers M., Schmitz R., Steinhard J. et al. Role of umbilicocerebral and cerebroplacental ratios in prediction of perinatal outcome in FGR pregnancies. Arch. Gynecol. Obstet. 2022; 305(6): 1383-92. https://dx.doi.org/10.1007/s00404-021-06268-4.
  4. Schreiber V., Hurst C., da Silva Costa F., Stoke R., Turner J., Kumar S. Definitions matter: detection rates and perinatal outcome for infants classified prenatally as having late fetal growth restriction using SMFM biometric vs ISUOG/Delphi consensus criteria. Ultrasound Obstet. Gynecol. 2023; 61(3): 377-85. https://dx.doi.org/10.1002/uog.26035.
  5. Roeckner J.T., Pressman K., Odibo L., Duncan J.R., Odibo A.O. Outcome-based comparison of SMFM and ISUOG definitions of fetal growth restriction. Ultrasound Obstet. Gynecol. 2021; 57(6): 925-30. https://dx.doi.org/10.1002/uog.23638.
  6. Lewkowitz A.K., Tuuli M.G., Cahill A.G., Macones G.A., Dicke J.M. Perinatal outcomes after intrauterine growth restriction and intermittently elevated umbilical artery Doppler. Am. J. Obstet. Gynecol MFM. 2019; 1(1): 64-73. https://dx.doi.org/10.1016/j.ajogmf.2019.02.005.
  7. Ciobanu A., Wright A., Syngelaki A., Wright D., Akolekar R., Nicolaides K.H. Fetal Medicine Foundation reference ranges for umbilical artery and middle cerebral artery pulsatility index and cerebroplacental ratio. Ultrasound Obstet. Gynecol. 2019; 53(4): 465-72. https://dx.doi.org/10.1002/uog.20157.
  8. Acharya G., Ebbing C., Karlsen H.O., Kiserud T., Rasmussen S. Sex-specific reference ranges of cerebroplacental and umbilicocerebral ratios: longitudinal study. Ultrasound Obstet. Gynecol. 2020; 56(2): 187-95. https:// dx.doi.org/10.1002/uog.21870.
  9. Stampalija T., Arabin B., Wolf H., Bilardo C.M., Lees C.; TRUFFLE investigators. Is middle cerebral artery Doppler related to neonatal and 2-year infant outcome in early fetal growth restriction? Am. J. Obstet. Gynecol. 2017; 216(5): 521.e1-521.e13. https://dx.doi.org/10.1016/j.ajog.2017.01.001.
  10. Министерство здравоохранения Российской Федерации. Нормальная беременность. Клинические рекомендации. М.; 2020. 80 c. [Ministry of Health of the Russian Federation. Normal pregnancy. Clinical guidelines. Moscow; 2020. 80 p. (in Russian)].
  11. Hadlock F.P., Harrist R.B., Sharman R.S., Deter R.L., Park S.K. Estimation of fetal weight with the use of head, body, and femur measurements--a prospective study. Am. J. Obstet. Gynecol. 1985; 151(3): 333-7. https:// dx.doi.org/10.1016/0002-9378(85)90298-4.
  12. Francis A., Hugh O., Gardosi J. Customized vs INTERGROWTH-21st standards for the assessment of birthweight and stillbirth risk at term. Am. J. Obstet. Gynecol. 2018; 218(2S): S692-S699. https://dx.doi.org/10.1016/ j.ajog.2017.12.013.
  13. Barros A.J., Hirakata V.N. Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Med. Res. Methodol. 2003; 3: 21. https://dx.doi.org/ 10.1186/1471-2288-3-21.
  14. Mecacci F., Avagliano L., Lisi F., Clemenza S., Serena C., Vannuccini S. et al. Fetal growth restriction: does an integrated maternal hemodynamic-placental model fit better? Reprod. Sci. 2021; 28(9): 2422-35. https://dx.doi.org/10.1007/s43032-020-00393-2.
  15. Redline R.W., Roberts D.J., Parast M.M., Ernst L.M., Morgan T.K., Greene M.F. et al. Placental pathology is necessary to understand common pregnancy complications and achieve an improved taxonomy of obstetrical disease. Am. J. Obstet. Gynecol. 2023; 228(2): 187-202. https://dx.doi.org/10.1016/ j.ajog.2022.08.010.
  16. Li R., Lodge J., Flatley C., Kumar S. The burden of adverse obstetric and perinatal outcomes from maternal smoking in an Australian cohort. Aust. N. Z. J. Obstet. Gynaecol. 2019; 59(3): 356-61. https://dx.doi.org/10.1111/ajo.12849.
  17. Курцер М.А., Сичинава Л.Г., Шишкина Д.И., Латышкевич О.А., Бреусенко Л.Е., Спиридонов Д.С. Задержка роста плода: современные критерии диагностики, тактика ведения беременности и родов. Вопросы гинекологии, акушерства и перинатологии. 2023; 22(1): 5-11. [Kurtser M.A., Sichinava L.G., Shishkina D.I., Latyshkevich O.A., Breusenko L.E., Spiridonov D.S. Fetal growth restriction: current diagnostic criteria, management of pregnancy and labor. Gynecology, Obstetrics and Perinatology. 2023; 22(1): 5-11. (in Russian)]. https://dx.doi.org/10.20953/1726-1678-2023-1-5-11.
  18. Melamed N., Baschat A., Yinon Y., Athanasiadis A., Mecacci F., Figueras F. et al. FIGO (International Federation of Gynecology and Obstetrics) initiative on fetal growth: best practice advice for screening, diagnosis, and management of fetal growth restriction. Int. J. Gynaecol. Obstet. 2021; 152 Suppl. 1(Suppl. 1): 3-57. https://dx.doi.org/10.1002/ijgo.13522.
  19. Rizzo G., Pietrolucci M.E., Mappa I. Modeling gestational age centiles for fetal umbilicocerebral ratio by quantile regression analysis: a secondary analysis of a prospective cross-sectional study. J. Matern. Fetal Neonatal Med. 2022; 35(22): 4381-5. https://dx.doi.org/10.1080/14767058.2020.1849123.
  20. Stampalija T., Thornton J., Marlow N., Napolitano R., Bhide A., Pickles T. et al.; TRUFFLE-2 Group. Fetal cerebral Doppler changes and outcome in late preterm fetal growth restriction: prospective cohort study. Ultrasound Obstet. Gynecol. 2020; 56(2): 173-81. https://dx.doi.org/10.1002/ uog.22125.
  21. Panda S., Jayalakshmi M., Shashi Kumari G., Mahalakshmi G., Srujan Y., Anusha V. Oligoamnios and perinatal outcome. J. Obstet. Gynaecol. India. 2017; 67(2): 104-8. https://dx.doi.org/10.1007/s13224-016-0938-3.
  22. Miremberg H., Grinstein E., Herman H.G., Marelly C., Barber E., Schreiber L. et al. The association between isolated oligohydramnios at term and placental pathology in correlation with pregnancy outcomes. Placenta. 2020; 90: 37-41. https://dx.doi.org/10.1016/j.placenta.2019.12.004.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies