A Solution to Fuller’s Problem Using Constructions of Pontryagin’s Maximum Principle
- Авторы: Kiselev Y.N.1, Orlov M.V.1, Orlov S.M.1
-
Учреждения:
- Department of Computational Mathematics and Cybernetics
- Выпуск: Том 42, № 4 (2018)
- Страницы: 152-162
- Раздел: Article
- URL: https://journals.rcsi.science/0278-6419/article/view/176253
- DOI: https://doi.org/10.3103/S0278641918040039
- ID: 176253
Цитировать
Аннотация
The classical two-dimensional Fuller problem is considered. The boundary value problem of Pontryagin’s maximum principle is considered. Based on the central symmetry of solutions to the boundary value problem, the Pontryagin maximum principle as a necessary condition of optimality, and the hypothesis of the form of the switching line, a solution to the boundary value problem is constructed and its optimality is substantiated. Invariant group analysis is in this case not used. The results are of considerable methodological interest.
Ключевые слова
Об авторах
Yu. Kiselev
Department of Computational Mathematics and Cybernetics
Автор, ответственный за переписку.
Email: kiselev@cs.msu.su
Россия, Moscow, 119991
M. Orlov
Department of Computational Mathematics and Cybernetics
Email: kiselev@cs.msu.su
Россия, Moscow, 119991
S. Orlov
Department of Computational Mathematics and Cybernetics
Email: kiselev@cs.msu.su
Россия, Moscow, 119991
Дополнительные файлы
