A Solution to Fuller’s Problem Using Constructions of Pontryagin’s Maximum Principle
- Авторлар: Kiselev Y.N.1, Orlov M.V.1, Orlov S.M.1
-
Мекемелер:
- Department of Computational Mathematics and Cybernetics
- Шығарылым: Том 42, № 4 (2018)
- Беттер: 152-162
- Бөлім: Article
- URL: https://journals.rcsi.science/0278-6419/article/view/176253
- DOI: https://doi.org/10.3103/S0278641918040039
- ID: 176253
Дәйексөз келтіру
Аннотация
The classical two-dimensional Fuller problem is considered. The boundary value problem of Pontryagin’s maximum principle is considered. Based on the central symmetry of solutions to the boundary value problem, the Pontryagin maximum principle as a necessary condition of optimality, and the hypothesis of the form of the switching line, a solution to the boundary value problem is constructed and its optimality is substantiated. Invariant group analysis is in this case not used. The results are of considerable methodological interest.
Негізгі сөздер
Авторлар туралы
Yu. Kiselev
Department of Computational Mathematics and Cybernetics
Хат алмасуға жауапты Автор.
Email: kiselev@cs.msu.su
Ресей, Moscow, 119991
M. Orlov
Department of Computational Mathematics and Cybernetics
Email: kiselev@cs.msu.su
Ресей, Moscow, 119991
S. Orlov
Department of Computational Mathematics and Cybernetics
Email: kiselev@cs.msu.su
Ресей, Moscow, 119991
Қосымша файлдар
