Outlier Detection in Complex Structured Event Streams


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Outlier detection methods are now used extensively, particularly in systems for detecting internal intrusions, in medicine, and in systems for detecting extremism in public political discussions on forums and social media. The aim of this work is to consider a fuzzy method of detecting outliers, based on elliptic clustering in the higher-dimensional space of attributes and using the Mahalanobis metrics for calculating the distances between objects and the center of a cluster. A procedure developed by the authors is used to find the optimum values of metaparameters of this algorithm. The classification of both individual events and complete sessions of user activity is considered, using an algorithm based on Welch’s t-statistics. The proposed procedures display a high quality of operation in solving two important problems of the stream analysis of complex data structures: the authentication of users by keystroke dynamics, and detecting extremist information in web text messages.

作者简介

M. Kazachuk

Faculty of Computational Mathematics and Cybernetics

编辑信件的主要联系方式.
Email: kazachuk@mlab.cs.msu.su
俄罗斯联邦, Moscow, 119991

M. Petrovskiy

Faculty of Computational Mathematics and Cybernetics

编辑信件的主要联系方式.
Email: michael@cs.msu.su
俄罗斯联邦, Moscow, 119991

I. Mashechkin

Faculty of Computational Mathematics and Cybernetics

编辑信件的主要联系方式.
Email: mash@cs.msu.su
俄罗斯联邦, Moscow, 119991

O. Gorokhov

Faculty of Computational Mathematics and Cybernetics

编辑信件的主要联系方式.
Email: owlman995@gmail.com
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2019