Combining endogenous and exogenous variables in a special case of non-parametric time series forecasting model


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We address a problem of increasing quality of forecasting time series by taking into account the information about exogenous time series. We aim to improve a non-parametric forecasting algorithm that minimizes the convolution of a histogram of time series with the loss function. We propose to adjust the histogram, using mixtures of conditional histograms as a less sparse alternative to multidimensional histogram and in some cases demonstrate the decrease of loss compared to the basic forecasting algorithm. To the extent of our knowledge, such approach to combining endogenous and exogenous time series is original and has not been proposed yet. The suggested method is illustrated with the data from the Russian Railways.

Sobre autores

A. Motrenko

Department of Control and Applied Mathematics

Autor responsável pela correspondência
Email: anastasiya.motrenko@phystech.edu
Rússia, Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141700

K. Rudakov

Department of Computational Mathematics and Cybernetics; Dorodnicyn Computing Center

Email: anastasiya.motrenko@phystech.edu
Rússia, Moscow, 119899; ul. Vavilova 40, GSP-1, Moscow, 119333

V. Strijov

Dorodnicyn Computing Center

Email: anastasiya.motrenko@phystech.edu
Rússia, ul. Vavilova 40, GSP-1, Moscow, 119333

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2016