Coloring of Pseudocubic Graphs in Three Colors
- Авторы: Selezneva S.N.1, Mel’nik M.V.1, Astakhova A.V.1
-
Учреждения:
- Department of Computational Mathematics and Cybernetics
- Выпуск: Том 43, № 2 (2019)
- Страницы: 82-88
- Раздел: Article
- URL: https://journals.rcsi.science/0278-6419/article/view/176299
- DOI: https://doi.org/10.3103/S0278641919020079
- ID: 176299
Цитировать
Аннотация
A graph is called pseudocubic if the degrees of all its vertices, with a single exception, do not exceed three, and the degree of an exceptional vertex does not exceed four. In this work, it is proved that the vertices of a pseudocubic graph without induced subgraphs that are isomorphic to K4 or K4− can be colored in three colors. In addition, it is shown that the problem of 3-coloring of pseudocubic graphs can be solved using a polynomial algorithm.
Об авторах
S. Selezneva
Department of Computational Mathematics and Cybernetics
Автор, ответственный за переписку.
Email: selezn@cs.msu.ru
Россия, Moscow, 119991
M. Mel’nik
Department of Computational Mathematics and Cybernetics
Автор, ответственный за переписку.
Email: melnikmv@cs.msu.ru
Россия, Moscow, 119991
A. Astakhova
Department of Computational Mathematics and Cybernetics
Автор, ответственный за переписку.
Email: astakhovaav17@gmail.com
Россия, Moscow, 119991
Дополнительные файлы
