Convergence of Grid Boundary-Value Problems for Functions Defined on Grid Cells and Faces


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For stationary diffusion-type equations, we study the convergence of grid inhomogeneous boundary-value problems of a version of the mimetic finite difference (MFD) technique in which grid scalars are defined inside grid cells and grid vectors are specified by their local normal coordinates on the plane faces of grid cells. Grid equations and boundary conditions are formulated in operator form using consistent grid analogs of invariant first-order differential operators and of boundary operators. Convergence is studied on the basis of the theory of operator difference schemes; i.e., a priori estimates for the norm of the solution error in terms of the norm of the approximation error are obtained that guarantee convergence of the first order under inhomogeneous boundary conditions of the first, second, and third kind in a domain with a curvilinear boundary. Grid analogs of embedding inequalities and approximation relations obtained earlier are used.

作者简介

N. Ardelyan

Department of Computational Mathematics and Cybernetics

编辑信件的主要联系方式.
Email: ardel@cs.msu.su
俄罗斯联邦, Moscow, 119991

K. Kosmachevskii

Department of Computational Mathematics and Cybernetics

编辑信件的主要联系方式.
Email: kosma@cs.msu.su
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2019