Complexity of function systems over a finite field in the class of polarized polynomial forms
- Authors: Selezneva S.N.1, Gordeev M.M.1
-
Affiliations:
- Department of Computational Mathematics and Cybernetics
- Issue: Vol 41, No 4 (2017)
- Pages: 193-198
- Section: Article
- URL: https://journals.rcsi.science/0278-6419/article/view/176210
- DOI: https://doi.org/10.3103/S0278641917040069
- ID: 176210
Cite item
Abstract
The Shannon complexity of a function system over a q-element finite field which contains m functions of n variables in the class of polarized polynomial forms is exactly evaluated: LqPPF (n,m) = qn for all n ≥ 1, m ≥ 2, and all possible odd q. It has previously been known that L2PPF (n,m) = 2n and L3PPF (n,m) = 3n for all n ≥ 1 and m ≥ 2.
About the authors
S. N. Selezneva
Department of Computational Mathematics and Cybernetics
Author for correspondence.
Email: selezn@cs.msu.su
Russian Federation, Moscow, 119991
M. M. Gordeev
Department of Computational Mathematics and Cybernetics
Email: selezn@cs.msu.su
Russian Federation, Moscow, 119991
Supplementary files
