Methods for identifying medical digital twins and a priori determining the characteristics of patient parameter predictions based on their data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Evaluating the characteristics of predicting patient parameters based on medical data is directly related to the quality of identifying medical digital twins, which predetermined both the direction of scientific research and the structure of the proposed article. Special attention is paid to solving the urgent task of improving the accuracy of the forecast by minimizing absolute and relative errors, as well as increasing the reliability of the estimates obtained by increasing the corresponding probability. This approach opens up great prospects for improving the provision of medical care, including in emergency situations.

About the authors

E. P. Minakov

A.F. Mozhaisky Military Aerospace Academy, Ministry of Defense of Russia

Author for correspondence.
Email: seliverstov-pv@yandex.ru
SPIN-code: 4819-0765

Doctor of Engineering Sciences; Professor

Russian Federation, Saint Petersburg

V. B. Grinevich

S.M. Kirov Military Medical Academy, Ministry of Defense of Russia

Email: seliverstov-pv@yandex.ru
ORCID iD: 0000-0002-1095-8787
SPIN-code: 1178-0242

MD; Professor

Russian Federation, Saint Petersburg

E. V. Kryukov

S.M. Kirov Military Medical Academy, Ministry of Defense of Russia

Email: seliverstov-pv@yandex.ru
ORCID iD: 0000-0002-8396-1936
SPIN-code: 3900-3441

Academician of the Russian Academy of Sciences, MD; Professor

Russian Federation, Saint Petersburg

P. V. Seliverstov

S.M. Kirov Military Medical Academy, Ministry of Defense of Russia

Email: seliverstov-pv@yandex.ru
ORCID iD: 0000-0001-5623-4226
SPIN-code: 6166-7005

Associate Professor, Candidate of Medical Sciences

Russian Federation, Saint Petersburg

References

  1. Sun T., He X., Li Z. Digital twin in healthcare: recent updates and challenges. Digit Health. 2023; 9: 20552076221149652. doi: 10.1177/20552076221149651
  2. Li L., Lei B., Mao C. Digital twin in smart manufacturing. J Ind Inf Integr. 2022; 26: 100289. doi: 10.1016/j.jii.2021.100289
  3. Sun T., He X., Song X. et al. The digital twin in medicine: a key to the future of healthcare? Front Med. 2022; 9: 907066. doi: 10.3389/fmed.2022.907066
  4. Schwartz S.M., Wildenhaus K., Bucher A. et al. Digital twins and the emerging science of self: implications for digital health experience design and “small” data. Front Comput Sci. 2020; 2. doi: 10.3389/fcomp.2020.00031
  5. Николаев В.А., Николаев А.А. Опыт и перспективы использования технологий виртуальной, дополненной и смешанной реальности в условиях цифровой трансформации системы здравоохранения. Медицинские технологии. Оценка и выбор. 2020; 2: 35–42 [Nikolaev V.A., Nikolaev A.A. Virtual, augmented and mixed reality technologies in the context of digitalization of healthcare system. Medical Technologies. Assessment and Choice. 2020; 2: 35–42 (in Russ.)]. doi: 10.17116/medtech20204002135.
  6. Минаков Е.П., Гриневич В.Б., Крюков Е.В. и др. Базы данных потенциальных цифровых двойников программно-моделирующего комплекса прогнозирования ведущих показателей состояния пациентов. Врач. 2025; 36 (10): 28–33 [Minakov E., Grinevich V., Kryukov E. et al. Databases of potential digital doubles of the software-modeling complex for predicting leading indicators of patients' condition. Vrach. 2025; 36 (10): 28–33 (in Russ.)]. doi: 10.29296/25877305-2025-10-05
  7. Saratkar S.Y., Langote M., Kumar P. et al. Digital twin for personalized medicine development. Front Digit Health. 2025; 7: 1583466. doi: 10.3389/fdgth.2025.1583466
  8. Machado T.M., Berssaneti F.T. Literature review of digital twin in healthcare. Heliyon. 2023; 9 (9): e19390. doi: 10.1016/j.heliyon.2023.e19390
  9. Vallée A. Digital twin for healthcare systems. Front Digit Health. 2023; 5: 1253050. doi: 10.3389/fdgth.2023.1253050
  10. Минаков Е.П., Гриневич В.Б., Крюков Е.В. и др. Прогнозирование ведущих показателей состояния пациентов с использованием медицинских цифровых двойников. Врач. 2025; 36 (11): 30–4 [Minakov E., Grinevich V., Kryukov E. et al. Predicting leading indicators of patient status using medical digital twins. Vrach. 2025; 36 (11): 30–4 (in Russ.)]. doi: 10.29296/25877305-2025-11-05
  11. Гриневич В.Б., Крюков Е.В., Минаков Е.П. и др. Концепция применения цифровых двойников для прогнозирования значений ведущих показателей состояния здоровья пациентов. Врач. 2025; 36 (9): 82–6 [Grinevich V., Kryukov E., Minakov E. et al. The concept of using digital twins to predict the values of leading indicators of patients' condition. Vrach. 2025; 36 (9): 83–6 (in Russ.)]. doi: 10.29296/25877305-2025-09-16

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».