Electronic smart bandage technology: the future of chronic wound treatment
- Authors: Tsvetkova E.V.1, Panteleeva Y.K.1, Vanyurkin A.G.1, Popov M.S.1, Verkhovskaya E.V.1, Chernyavsky M.A.1
-
Affiliations:
- V.A. Almazov National Medical Research Center, Ministry of Health of Russia
- Issue: Vol 36, No 12 (2025)
- Pages: 17-21
- Section: Novelty in Medicine
- URL: https://journals.rcsi.science/0236-3054/article/view/365669
- DOI: https://doi.org/10.29296/25877305-2025-12-03
- ID: 365669
Cite item
Abstract
The technology of smart dressings – modern portable devices for healing wound defects, most successfully combines the therapeutic electrical stimulation mode and physiological monitoring of the wound environment for the most effective control over the treatment processes. This review presents the latest data on the operating principles and device of a smart dressing that can monitor various biochemical and physiological parameters of the wound environment (temperature, impedance, oxygen, acidity of the environment (pH), urea, lactate) in real time, as well as updates in the operation of devices and their clinical application. With the possibility of non-invasive diagnosis and treatment of wounds, smart dressings can play an important role in the care and healing of wound defects.
About the authors
E. V. Tsvetkova
V.A. Almazov National Medical Research Center, Ministry of Health of Russia
Author for correspondence.
Email: etsvetkova86@gmail.com
SPIN-code: 6366-8670
Russian Federation, Saint Petersburg
Yu. K. Panteleeva
V.A. Almazov National Medical Research Center, Ministry of Health of Russia
Email: etsvetkova86@gmail.com
SPIN-code: 8028-2159
Russian Federation, Saint Petersburg
A. G. Vanyurkin
V.A. Almazov National Medical Research Center, Ministry of Health of Russia
Email: etsvetkova86@gmail.com
SPIN-code: 1744-1935
Russian Federation, Saint Petersburg
M. S. Popov
V.A. Almazov National Medical Research Center, Ministry of Health of Russia
Email: etsvetkova86@gmail.com
Russian Federation, Saint Petersburg
E. V. Verkhovskaya
V.A. Almazov National Medical Research Center, Ministry of Health of Russia
Email: etsvetkova86@gmail.com
SPIN-code: 9269-2580
Russian Federation, Saint Petersburg
M. A. Chernyavsky
V.A. Almazov National Medical Research Center, Ministry of Health of Russia
Email: etsvetkova86@gmail.com
SPIN-code: 5009-7818
MD
Russian Federation, Saint PetersburgReferences
- Leal-Junior A., Guo J., Min R. et al. Photonic smart bandage for wound healing assessment. Photonics Res. 2021; 9 (3): 272–80. doi: 10.1364/PRJ.410168
- Zeng Q., Qi X., Shi G. et al. Wound Dressing: From Nanomaterials to Diagnostic Dressings and Healing Evaluations. ACS Nano. 2022; 16 (2): 1708–33. doi: 10.1021/acsnano.1c08411
- Derakhshandeh H., Aghabaglou F., McCarthy A. et al. A Wirelessly Controlled Smart Bandage with 3D-Printed Miniaturized Needle Arrays. Adv Funct Mater. 2020; 30 (13): 1905544. doi: 10.1002/adfm.201905544
- Shao-Hao L., Samandari M., Li C. et al. Multimodal sensing and therapeutic systems for wound healing and management: A review. Sensors Actuators Rep. 2022; 4 (suppl): 100075. doi: 10.1016/j.snr.2022.100075
- Cheng S., Gu Z., Zhou L. et al. Recent Progress in Intelligent Wearable Sensors for Health Monitoring and Wound Healing Based on Biofluids. Front Bioeng Biotechnol. 2021; 9: 765987. doi: 10.3389/fbioe.2021.765987
- Cheah Y.J., Buyong M.R., Mohd Yunus M.H. Wound Healing with Electrical Stimulation Technologies: A Review. Polymers (Basel). 2021; 13 (21): 3790. doi: 10.3390/polym13213790
- Williams J.Z., Barbul A. Nutrition and wound healing. Surg Clin North Am. 2003; 83 (3): 571–96. doi: 10.1016/S0039-6109(02)00193-7
- Serra M.B., Barroso W.A., da Silva N.N. et al. From Inflammation to Current and Alternative Therapies Involved in Wound Healing. Int J Inflam. 2017; 2017: 3406215. doi: 10.1155/2017/3406215
- Darby I.A., Laverdet B., Bonté F. et al. Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol. 2014; 7: 301–11. doi: 10.2147/CCID.S50046
- Mayet N., Choonara Y.E., Kumar P. et al. A comprehensive review of advanced biopolymeric wound healing systems. J Pharm Sci. 2014; 103 (8): 2211–30. doi: 10.1002/jps.24068
- Dowsett C., Bielby A., Searle R. Reconciling increasing wound care demands with available resources. J Wound Care. 2014; 23 (11): 552, 554, 556–8. doi: 10.12968/jowc.2014.23.11.552
- Moore K., McCallion R., Searle R.J. et al. Prediction and monitoring the therapeutic response of chronic dermal wounds. Int Wound J. 2006; 3 (2): 89–96. doi: 10.1111/j.1742-4801.2006.00212.x
- Zhao M., Song B., Pu J. et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature. 2006; 442 (7101): 457–60. doi: 10.1038/nature04925
- Lin F., Baldessari F., Gyenge C.C. et al. Lymphocyte electrotaxis in vitro and in vivo. J Immunol. 2008; 181 (4): 2465–71. doi: 10.4049/jimmunol.181.4.2465
- Sugimoto M., Maeshige N., Honda H. et al. Optimum microcurrent stimulation intensity for galvanotaxis in human fibroblasts. J Wound Care. 2012; 21 (1): 5–6, 8, 10; discussion 10–1. doi: 10.12968/jowc.2012.21.Sup9.S5
- Bourguignon G.J., Jy W., Bourguignon L.Y. Electric stimulation of human fibroblasts causes an increase in Ca2+ influx and the exposure of additional insulin receptors. J Cell Physiol. 1989; 140 (2): 379–85. doi: 10.1002/jcp.1041400224
- Orida N., Feldman J.D. Directional protrusive pseudopodial activity and motility in macrophages induced by extracellular electric fields. Cell Motil. 1982; 2 (3): 243–55. doi: 10.1002/cm.970020305
- Nishimura K.Y., Isseroff R.R., Nuccitelli R. Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J Cell Sci. 1996; 109 (Pt 1): 199–207. doi: 10.1242/jcs.109.1.199
- Kloth L.C. Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials. Int J Low Extrem Wounds. 2005; 4 (1): 23–44. doi: 10.1177/1534734605275733
- Feedar J.A., Kloth L.C., Gentzkow G.D. Chronic dermal ulcer healing enhanced with monophasic pulsed electrical stimulation. Phys Ther. 1991; 71 (9): 639–49. doi: 10.1093/ptj/71.9.639
- Baker L.L., Rubayi S., Villar F. et al. Effect of electrical stimulation waveform on healing of ulcers in human beings with spinal cord injury. Wound Repair Regen. 1996; 4 (1): 21–8. doi: 10.1046/j.1524-475X.1996.40106.x
- Nakagami G., Sanada H., Iizaka S. et al. Predicting delayed pressure ulcer healing using thermography: a prospective cohort study. J Wound Care. 2010; 19 (11): 465–6, 468, 470. doi: 10.12968/jowc.2010.19.11.79695
- Martinez-Jiménez M.A., Aguilar-Garcia J., Valdés-Rodriguez R. et al. Local use of insulin in wounds of diabetic patients: higher temperature, fibrosis, and angiogenesis. Plast Reconstr Surg. 2013; 132 (6): 1015e–1019e. doi: 10.1097/PRS.0b013e3182a806f0
- Salvo P., Calisi N., Melai B. et al. Temperature- and pH-sensitive wearable materials for monitoring foot ulcers. Int J Nanomedicine. 2017; 12: 949–54. doi: 10.2147/IJN.S121726
- Lou D., Pang Q., Pei X. et al. Flexible wound healing system for pro-regeneration, temperature monitoring and infection early warning. Biosens Bioelectron. 2020; 162: 112275. doi: 10.1016/j.bios.2020.112275
- Li Z., Roussakis E., Koolen P.G. et al. Non-invasive transdermal two-dimensional mapping of cutaneous oxygenation with a rapid-drying liquid bandage. Biomed Opt Express. 2014; 5 (11): 3748–64. doi: 10.1364/BOE.5.003748
- Schneider L.A., Korber A., Grabbe S. et al. Influence of pH on wound-healing: a new perspective for wound-therapy? Arch Dermatol Res. 2007; 298 (9): 413–20. doi: 10.1007/s00403-006-0713-x
- Sridhar V., Takahata K. A hydrogel-based passive wireless sensor using a flex-circuit inductive transducer. Sens Actuators, A. 2009; 155 (1): 58–65. doi: 10.1016/j.sna.2009.08.010
- Phair J., Leach C.P., Cardosi M.F. et al. Atmospheric pressure plasma treated carbon fibre weave: A flexible approach to wound monitoring. Electrochem Commun. 2013; 33: 99–101. doi: 10.1016/j.elecom.2013.04.024
- Sharp D., Gladstone P., Smith R.B. et al. Approaching intelligent infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection. Bioelectrochemistry. 2010; 77 (2): 114–9. doi: 10.1016/j.bioelechem.2009.07.008
- Ciani I., Schulze H., Corrigan D.K. et al. Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy. Biosens Bioelectron. 2012; 31 (1): 413–8. doi: 10.1016/j.bios.2011.11.004
- Hossain I., Zahid S., Chowdhury M.A. et al. Smart bandage: A device for wound monitoring and targeted treatment. Results in Chemistry. 2023; 7: 101292. DOI: 10.1016 /j.rechem.2023.101292
- Li W., Jin X., Han X. et al. Synergy of Porous Structure and Microstructure in Piezoresistive Material for High-Performance and Flexible Pressure Sensors. ACS Appl Mater Interfaces. 2021; 13 (16): 19211–20. doi: 10.1021/acsami.0c22938
- Zhu Y., Zhang J., Song J. et al. Multifunctional Pro-Healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment. Advanced Functional Materials. 2019; 30 (6): 1905493. doi: 10.1002/adfm.201905493
- Guo S., Dipietro L.A. Factors affecting wound healing. J Dent Res. 2010; 89 (3): 219–29. doi: 10.1177/0022034509359125
- Gao Y., Nguyen D.T., Yeo T. et al. A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. Sci Adv. 2021; 7 (21): eabg9614. doi: 10.1126/sciadv.abg9614
- Jiang Y., Trotsyuk A.A., Niu S. et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat Biotechnol. 2023; 41 (5): 652–62. doi: 10.1038/s41587-022-01528-3
- Shirzaei Sani E., Xu C., Wang C. et al. A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci Adv. 2023; 9 (12): eadf7388. doi: 10.1126/sciadv.adf7388
- Hampton S., King L. Healing an intractable wound using bio-electrical stimulation therapy. Br J Nurs. 2005; 14 (15): S30–2. doi: 10.12968/bjon.2005.14.sup
- Chan R.K., Nuutila K., Mathew-Steiner S.S. et al. A Prospective, Randomized, Controlled Study to Evaluate the Effectiveness of a Fabric-Based Wireless Electroceutical Dressing Compared to Standard-of-Care Treatment Against Acute Trauma and Burn Wound Biofilm Infection. Adv Wound Care (New Rochelle). 2024; 13 (1): 1–13. doi: 10.1089/wound.2023.0007
- Duan G., Wen L., Sun X. et al. Healing Diabetic Ulcers with MoO3-X Nanodots Possessing Intrinsic ROS-Scavenging and Bacteria-Killing Capacities. Small. 2022; 18 (10): e2107137. doi: 10.1002/smll.202107137
Supplementary files
