Electronic smart bandage technology: the future of chronic wound treatment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The technology of smart dressings – modern portable devices for healing wound defects, most successfully combines the therapeutic electrical stimulation mode and physiological monitoring of the wound environment for the most effective control over the treatment processes. This review presents the latest data on the operating principles and device of a smart dressing that can monitor various biochemical and physiological parameters of the wound environment (temperature, impedance, oxygen, acidity of the environment (pH), urea, lactate) in real time, as well as updates in the operation of devices and their clinical application. With the possibility of non-invasive diagnosis and treatment of wounds, smart dressings can play an important role in the care and healing of wound defects.

About the authors

E. V. Tsvetkova

V.A. Almazov National Medical Research Center, Ministry of Health of Russia

Author for correspondence.
Email: etsvetkova86@gmail.com
SPIN-code: 6366-8670
Russian Federation, Saint Petersburg

Yu. K. Panteleeva

V.A. Almazov National Medical Research Center, Ministry of Health of Russia

Email: etsvetkova86@gmail.com
SPIN-code: 8028-2159
Russian Federation, Saint Petersburg

A. G. Vanyurkin

V.A. Almazov National Medical Research Center, Ministry of Health of Russia

Email: etsvetkova86@gmail.com
SPIN-code: 1744-1935
Russian Federation, Saint Petersburg

M. S. Popov

V.A. Almazov National Medical Research Center, Ministry of Health of Russia

Email: etsvetkova86@gmail.com
Russian Federation, Saint Petersburg

E. V. Verkhovskaya

V.A. Almazov National Medical Research Center, Ministry of Health of Russia

Email: etsvetkova86@gmail.com
SPIN-code: 9269-2580
Russian Federation, Saint Petersburg

M. A. Chernyavsky

V.A. Almazov National Medical Research Center, Ministry of Health of Russia

Email: etsvetkova86@gmail.com
SPIN-code: 5009-7818

MD

Russian Federation, Saint Petersburg

References

  1. Leal-Junior A., Guo J., Min R. et al. Photonic smart bandage for wound healing assessment. Photonics Res. 2021; 9 (3): 272–80. doi: 10.1364/PRJ.410168
  2. Zeng Q., Qi X., Shi G. et al. Wound Dressing: From Nanomaterials to Diagnostic Dressings and Healing Evaluations. ACS Nano. 2022; 16 (2): 1708–33. doi: 10.1021/acsnano.1c08411
  3. Derakhshandeh H., Aghabaglou F., McCarthy A. et al. A Wirelessly Controlled Smart Bandage with 3D-Printed Miniaturized Needle Arrays. Adv Funct Mater. 2020; 30 (13): 1905544. doi: 10.1002/adfm.201905544
  4. Shao-Hao L., Samandari M., Li C. et al. Multimodal sensing and therapeutic systems for wound healing and management: A review. Sensors Actuators Rep. 2022; 4 (suppl): 100075. doi: 10.1016/j.snr.2022.100075
  5. Cheng S., Gu Z., Zhou L. et al. Recent Progress in Intelligent Wearable Sensors for Health Monitoring and Wound Healing Based on Biofluids. Front Bioeng Biotechnol. 2021; 9: 765987. doi: 10.3389/fbioe.2021.765987
  6. Cheah Y.J., Buyong M.R., Mohd Yunus M.H. Wound Healing with Electrical Stimulation Technologies: A Review. Polymers (Basel). 2021; 13 (21): 3790. doi: 10.3390/polym13213790
  7. Williams J.Z., Barbul A. Nutrition and wound healing. Surg Clin North Am. 2003; 83 (3): 571–96. doi: 10.1016/S0039-6109(02)00193-7
  8. Serra M.B., Barroso W.A., da Silva N.N. et al. From Inflammation to Current and Alternative Therapies Involved in Wound Healing. Int J Inflam. 2017; 2017: 3406215. doi: 10.1155/2017/3406215
  9. Darby I.A., Laverdet B., Bonté F. et al. Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol. 2014; 7: 301–11. doi: 10.2147/CCID.S50046
  10. Mayet N., Choonara Y.E., Kumar P. et al. A comprehensive review of advanced biopolymeric wound healing systems. J Pharm Sci. 2014; 103 (8): 2211–30. doi: 10.1002/jps.24068
  11. Dowsett C., Bielby A., Searle R. Reconciling increasing wound care demands with available resources. J Wound Care. 2014; 23 (11): 552, 554, 556–8. doi: 10.12968/jowc.2014.23.11.552
  12. Moore K., McCallion R., Searle R.J. et al. Prediction and monitoring the therapeutic response of chronic dermal wounds. Int Wound J. 2006; 3 (2): 89–96. doi: 10.1111/j.1742-4801.2006.00212.x
  13. Zhao M., Song B., Pu J. et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature. 2006; 442 (7101): 457–60. doi: 10.1038/nature04925
  14. Lin F., Baldessari F., Gyenge C.C. et al. Lymphocyte electrotaxis in vitro and in vivo. J Immunol. 2008; 181 (4): 2465–71. doi: 10.4049/jimmunol.181.4.2465
  15. Sugimoto M., Maeshige N., Honda H. et al. Optimum microcurrent stimulation intensity for galvanotaxis in human fibroblasts. J Wound Care. 2012; 21 (1): 5–6, 8, 10; discussion 10–1. doi: 10.12968/jowc.2012.21.Sup9.S5
  16. Bourguignon G.J., Jy W., Bourguignon L.Y. Electric stimulation of human fibroblasts causes an increase in Ca2+ influx and the exposure of additional insulin receptors. J Cell Physiol. 1989; 140 (2): 379–85. doi: 10.1002/jcp.1041400224
  17. Orida N., Feldman J.D. Directional protrusive pseudopodial activity and motility in macrophages induced by extracellular electric fields. Cell Motil. 1982; 2 (3): 243–55. doi: 10.1002/cm.970020305
  18. Nishimura K.Y., Isseroff R.R., Nuccitelli R. Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J Cell Sci. 1996; 109 (Pt 1): 199–207. doi: 10.1242/jcs.109.1.199
  19. Kloth L.C. Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials. Int J Low Extrem Wounds. 2005; 4 (1): 23–44. doi: 10.1177/1534734605275733
  20. Feedar J.A., Kloth L.C., Gentzkow G.D. Chronic dermal ulcer healing enhanced with monophasic pulsed electrical stimulation. Phys Ther. 1991; 71 (9): 639–49. doi: 10.1093/ptj/71.9.639
  21. Baker L.L., Rubayi S., Villar F. et al. Effect of electrical stimulation waveform on healing of ulcers in human beings with spinal cord injury. Wound Repair Regen. 1996; 4 (1): 21–8. doi: 10.1046/j.1524-475X.1996.40106.x
  22. Nakagami G., Sanada H., Iizaka S. et al. Predicting delayed pressure ulcer healing using thermography: a prospective cohort study. J Wound Care. 2010; 19 (11): 465–6, 468, 470. doi: 10.12968/jowc.2010.19.11.79695
  23. Martinez-Jiménez M.A., Aguilar-Garcia J., Valdés-Rodriguez R. et al. Local use of insulin in wounds of diabetic patients: higher temperature, fibrosis, and angiogenesis. Plast Reconstr Surg. 2013; 132 (6): 1015e–1019e. doi: 10.1097/PRS.0b013e3182a806f0
  24. Salvo P., Calisi N., Melai B. et al. Temperature- and pH-sensitive wearable materials for monitoring foot ulcers. Int J Nanomedicine. 2017; 12: 949–54. doi: 10.2147/IJN.S121726
  25. Lou D., Pang Q., Pei X. et al. Flexible wound healing system for pro-regeneration, temperature monitoring and infection early warning. Biosens Bioelectron. 2020; 162: 112275. doi: 10.1016/j.bios.2020.112275
  26. Li Z., Roussakis E., Koolen P.G. et al. Non-invasive transdermal two-dimensional mapping of cutaneous oxygenation with a rapid-drying liquid bandage. Biomed Opt Express. 2014; 5 (11): 3748–64. doi: 10.1364/BOE.5.003748
  27. Schneider L.A., Korber A., Grabbe S. et al. Influence of pH on wound-healing: a new perspective for wound-therapy? Arch Dermatol Res. 2007; 298 (9): 413–20. doi: 10.1007/s00403-006-0713-x
  28. Sridhar V., Takahata K. A hydrogel-based passive wireless sensor using a flex-circuit inductive transducer. Sens Actuators, A. 2009; 155 (1): 58–65. doi: 10.1016/j.sna.2009.08.010
  29. Phair J., Leach C.P., Cardosi M.F. et al. Atmospheric pressure plasma treated carbon fibre weave: A flexible approach to wound monitoring. Electrochem Commun. 2013; 33: 99–101. doi: 10.1016/j.elecom.2013.04.024
  30. Sharp D., Gladstone P., Smith R.B. et al. Approaching intelligent infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection. Bioelectrochemistry. 2010; 77 (2): 114–9. doi: 10.1016/j.bioelechem.2009.07.008
  31. Ciani I., Schulze H., Corrigan D.K. et al. Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy. Biosens Bioelectron. 2012; 31 (1): 413–8. doi: 10.1016/j.bios.2011.11.004
  32. Hossain I., Zahid S., Chowdhury M.A. et al. Smart bandage: A device for wound monitoring and targeted treatment. Results in Chemistry. 2023; 7: 101292. DOI: 10.1016 /j.rechem.2023.101292
  33. Li W., Jin X., Han X. et al. Synergy of Porous Structure and Microstructure in Piezoresistive Material for High-Performance and Flexible Pressure Sensors. ACS Appl Mater Interfaces. 2021; 13 (16): 19211–20. doi: 10.1021/acsami.0c22938
  34. Zhu Y., Zhang J., Song J. et al. Multifunctional Pro-Healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment. Advanced Functional Materials. 2019; 30 (6): 1905493. doi: 10.1002/adfm.201905493
  35. Guo S., Dipietro L.A. Factors affecting wound healing. J Dent Res. 2010; 89 (3): 219–29. doi: 10.1177/0022034509359125
  36. Gao Y., Nguyen D.T., Yeo T. et al. A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. Sci Adv. 2021; 7 (21): eabg9614. doi: 10.1126/sciadv.abg9614
  37. Jiang Y., Trotsyuk A.A., Niu S. et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat Biotechnol. 2023; 41 (5): 652–62. doi: 10.1038/s41587-022-01528-3
  38. Shirzaei Sani E., Xu C., Wang C. et al. A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci Adv. 2023; 9 (12): eadf7388. doi: 10.1126/sciadv.adf7388
  39. Hampton S., King L. Healing an intractable wound using bio-electrical stimulation therapy. Br J Nurs. 2005; 14 (15): S30–2. doi: 10.12968/bjon.2005.14.sup
  40. Chan R.K., Nuutila K., Mathew-Steiner S.S. et al. A Prospective, Randomized, Controlled Study to Evaluate the Effectiveness of a Fabric-Based Wireless Electroceutical Dressing Compared to Standard-of-Care Treatment Against Acute Trauma and Burn Wound Biofilm Infection. Adv Wound Care (New Rochelle). 2024; 13 (1): 1–13. doi: 10.1089/wound.2023.0007
  41. Duan G., Wen L., Sun X. et al. Healing Diabetic Ulcers with MoO3-X Nanodots Possessing Intrinsic ROS-Scavenging and Bacteria-Killing Capacities. Small. 2022; 18 (10): e2107137. doi: 10.1002/smll.202107137

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».