Clinical application of Raman spectroscopy in gynecology

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Existing screening and diagnostic methods for some gynecological pathologies have limited diagnostic accuracy due to invasiveness, high cost and labor intensity, as well as the need to use complex approaches to establish a final diagnosis. In recent years, the attention of researchers has been attracted by spectroscopic methods, in particular Raman spectroscopy, which opens up new prospects in the diagnosis of a number of gynecological diseases.

Sobre autores

D. Lystsev

Sechenov First Moscow State Medical University

Autor responsável pela correspondência
Email: rchilova@gmail.com
ORCID ID: 0009-0006-3826-3174
Rússia, Moscow

V. Kaptilny

Sechenov First Moscow State Medical University

Email: rchilova@gmail.com
ORCID ID: 0000-0002-2656-132X
Código SPIN: 4312-3455

Candidate of Medical Sciences

Rússia, Moscow

V. Zuev

Sechenov First Moscow State Medical University

Email: rchilova@gmail.com
ORCID ID: 0000-0001-8715-2020
Código SPIN: 2857-0309

MD, Professor

Rússia, Moscow

R. Chilova

Sechenov First Moscow State Medical University

Email: rchilova@gmail.com
ORCID ID: 0000-0001-6331-3109
Código SPIN: 4137-4848

MD, Professor

Rússia, Moscow

Bibliografia

  1. Ong T.T., Blanch E.W., Jones O.A. Surface Enhanced Raman Spectroscopy in Environmental Analysis, Monitoring and Assessment. Sci Total Environ. 2020; 720: 137601. doi: 10.1016/j.scitotenv.2020.137601
  2. Nicolson F., Kircher M.F., Stone N. et al. Spatially Offset Raman Spectroscopy for Biomedical Applications. Chem Soc Rev. 2021; 50: 556–68. doi: 10.1039/d0cs00855a
  3. Baker M.J., Hussain S.R., Lovergne L. et al. Developing and Understanding Biofluid Vibrational Spectroscopy: A Critical Review. Chem Soc Rev. 2016; 45: 1803–18. doi: 10.1039/c5cs00585j
  4. Shrivastava A., Aggarwal L.M., Krishna C.M. et al. Diagnostic and Prognostic Application of Raman Spectroscopy in Carcinoma Cervix: A Biomolecular Approach. Spectrochim Acta A Mol Biomol Spectrosc. 2021; 250: 119356. doi: 10.1016/j.saa.2020.119356
  5. Lu D., Ran M., Liu Y. et al. SERS Spectroscopy Using Au-Ag Nanoshuttles and Hydrophobic Paper-Based Au Nanoflower Substrate for Simultaneous Detection of Dual Cervical Cancer-Associated Serum Biomarkers. Anal Bioanal Chem. 2020; 412 (26): 7099–112. doi: 10.1007/s00216-020-02843-x
  6. Karunakaran V., Saritha V.N., Joseph M.M. et al. Diagnostic Spectro-Cytology Revealing Differential Recognition of Cervical Cancer Lesions by Label-Free Surface Enhanced Raman Fingerprints and Chemometrics. Nanomedicine. 2020; 29: 102276. doi: 10.1016/j.nano.2020.102276
  7. Traynor D., Duraipandian S., Bhatia R. et al. The Potential of Biobanked Liquid Based Cytology Samples for Cervical Cancer Screening Using Raman Spectroscopy. J Biophotonics. 2019; 12 (7): e201800377. doi: 10.1002/jbio.201800377
  8. Jusman Y., Isa N.A.M., Ng S.-C. et al. Automated Cervical Precancerous Cells Screening System Based on Fourier Transform Infrared Spectroscopy Features. J Biomed Opt. 2016; 21 (7): 75005. doi: 10.1117/1.JBO.21.7.075005
  9. Ramos I.R., Meade A.D., Ibrahim O. et al. Raman Spectroscopy for Cytopathology of Exfoliated Cervical Cells. Faraday Discuss. 2016; 187: 187–98. doi: 10.1039/c5fd00197h
  10. Wang J., Zheng C.X., Ma C.L. et al. Raman Spectroscopic Study of Cervical Precancerous Lesions and Cervical Cancer. Lasers Med Sci. 2021; 36 (9): 1855–64. doi: 10.1007/s10103-020-03218-5
  11. Zhang H., Cheng C., Gao R. et al. Rapid Identification of Cervical Adenocarcinoma and Cervical Squamous Cell Carcinoma Tissue Based on Raman Spectroscopy Combined with Multiple Machine Learning Algorithms. Photodiagnosis Photodyn Ther. 2021; 33: 102104. doi: 10.1016/j.pdpdt.2020.102104
  12. Zheng C., Qing S., Wang J. et al. Diagnosis of Cervical Squamous Cell Carcinoma and Cervical Adenocarcinoma Based on Raman Spectroscopy and Support Vector Machine. Photodiagnosis Photodyn Ther. 2019; 27: 156–61. doi: 10.1016/j.pdpdt.2019.05.029
  13. Daniel A., Prakasarao A., Ganesan S. Near-Infrared Raman Spectroscopy for Estimating Biochemical Changes Associated with Different Pathological Conditions of Cervix. Spectrochim Acta A Mol Biomol Spectrosc. 2018; 190: 409–16. doi: 10.1016/j.saa.2017.09.014
  14. Daniel A., Prakasarao A., Dornadula K. et al. Polarized Raman Spectroscopy Unravels the Biomolecular Structural Changes in Cervical Cancer. Spectrochim Acta A Mol Biomol Spectrosc. 2016; 152: 58–63. doi: 10.1016/j.saa.2015.06.053
  15. Liang X., Miao X., Xiao W. et al. Filter- Membrane-Based Ultrafiltration Coupled with Surface-Enhanced Raman Spectroscopy for Potential Differentiation of Benign and Malignant Thyroid Tumors from Blood Plasma. Int J Nanomedicine. 2020; 15: 2303–14. doi: 10.2147/IJN.S233663
  16. Paraskevaidi M., Morais C.L.M., Ashton K.M. et al. Detecting Endometrial Cancer by Blood Spectroscopy: A Diagnostic Cross-Sectional Study. Cancers (Basel). 2020; 12 (5): 1256. doi: 10.3390/cancers12051256
  17. Perumal J., Mahyuddin A., Balasundaram G. et al. SERS-Based Detection of Haptoglobin in Ovarian Cyst Fluid as a Point-of-Care Diagnostic Assay for Epithelial Ovarian Cancer. Cancer Manag Res. 2019; 11: 1115–24. doi: 10.2147/CMAR.S185375
  18. Paraskevaidi M., Ashton K.M., Stringfellow H.F. et al. Raman Spectroscopic Techniques to Detect Ovarian Cancer Biomarkers in Blood Plasma. Talanta. 2018; 189: 281–8. doi: 10.1016/j.talanta.2018.06.084
  19. Theophilou G., Lima K.M.G., Martin-Hirsch P.L. et al. ATR-FTIR Spectroscopy Coupled with Chemometric Analysis Discriminates Normal, Borderline and Malignant Ovarian Tissue: classifying Subtypes of Human Cancer. Analyst. 2016; 141: 585–94. doi: 10.1039/C5AN00939A

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».