Role of the Pulse Current Duty Cycle during Titanium Tension

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effect of a pulsed current on titanium tensile deformation obtained by postdeformation annealing after cold rolling of the coarse-grained and ultrafine-grained states has been considered. The effect of the duty cycle of the pulse current over a wide range on the shape of the stress–strain curves and mechanical properties has been studied. It is shown that an increase in the duty cycle results in an enhancement in the thermal effect of the current and a decrease in the flow stresses, strength, and plasticity, as well as in intense necking. A decrease in the duty cycle leads to the absence of heating and the occurrence of the electroplastic effect and an increase in the strength and plasticity, which depends on the structural state of coarse-grained titanium and the method of titanium production. The possible physical mechanisms of hardening associated with twinning, strain aging, and low-cycle fatigue have been considered.

作者简介

V. Stolyarov

Mechanical Engineering Research Institute of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: vlstol@mail.ru
101900, Moscow, Russia

参考

  1. Троицкий O.A., Баранов Ю.В., Авраамов Ю.С., Шляпин А.Д. Физические основы и технологии обработки современных материалов (теория, технология, структура и свойства). В 2-х томах. Т. 1. Москва–Ижевск: Институт компьютерных технологий, 2004. 590 с.
  2. Conrad H. Effects of electric current on solid state phase transformations in metals // Mater. Sci. Eng. A. 2000. 287 (2). P. 227.
  3. Troitskii O.A. Electromechanical effect in metals // JETP Letters. 1969. № 1. P. 18.
  4. Varma S.K., Cornwell L.R. The Electroplastic Effect in Aluminum // Scr. Metall. 1979. V. 13. P. 733.
  5. Roh J.H., Seo J.J., Hong S.T., Kim M.J., Han H.N., Roth J.T. The mechanical behavior of 5052-H32 aluminum alloys under a pulsed electric current // Inter. J. of Plasticity 58. 2014. P. 84. https://doi.org/10.1016/j.ijplas.2014.02.002
  6. Xu X., Zhao Y., Ma B., Zhang M. Rapid precipitation of T-phase in the 2024 aluminum alloy via cyclic electropulsing treatment // J. of Alloys and Compounds. 2014. V. 610. P. 506. https://doi.org/10.1016/j.jallcom.2014.05.063
  7. Wu W., Wang Y., Wang J., Wei S. Effect of electrical pulse on the precipitates and material strength of 2024 aluminum alloy // Mater. Sci. Eng. A. 2014. V. 608. P. 190. https://doi.org/10.1016/j.msea.2014.04.071
  8. Li X., Tang G., Kuang J., Li X., Zhu J. Effect of current frequency on the mechanical properties, microstructure and texture evolution in AZ31 magnesium alloy strips during electroplastic rolling // Mater. Sci. Eng. A. 2014. V. 612. P. 406. https://doi.org/10.1016/j.msea.2014.06.075
  9. Sánchez Egea A.J., González Rojas H.A., Celentano D.J., Travieso-Rodríguez J.A., Llumà i Fuentes J. Electroplasticity-assisted bottom bending process // J. Mater. Process. Technol. 2014. V. 214. P. 2261. https://doi.org/10.1016/j.jmatprotec.2014.04.031
  10. Guo D., Deng W., Song P., Lv X., Shi Y., Qu Z., Zhang G. Effect of Strain Rate on Microstructure and Mechanical Properties of Electroplastic Rolled ZrTi Alloym // Adv. Eng. Mater. 2022. V. 24 (7). https://doi.org/10.1002/adem.202101366
  11. Sheng Y., Hua Y., Wang X., Zhao X., Chen L., Zhou H., Wang J., Berndt C.C. Li W. Application of High-Density Electropulsing to Improve the Performance of Metallic Materials:Mechanisms, Microstructure and Properties // Materials. 2018. V. 11. P. 185. https://doi.org/10.3390/ma11020185
  12. Kim M.J., Lee M.G., Hariharan K., Hong S.T., Choi I.S., Kim D., Oh K.H., Han H.N. Electric current-assisted deformation behavior of Al-Mg-Si alloy under uniaxial tension // Int. J. Plast. 2017. V. 94. P. 148. https://doi.org/. 09.010.https://doi.org/10.1016/j.ijplas.2016
  13. Indhiarto I., Shimizu T., Furushima T., Yang M. Effect of DC pulsed-current on deformation behavior of magnesium alloy thin sheets // Procedia Manufact. 2018. V. 15. P. 1663. https://doi.org/10.1016/j.promfg.2018.07.270
  14. Stolyarov V., Korolkov O., Pesin A., Raab G. Deformation Behavior under Tension with Pulse Current of Ultrafine-Grain and Coarse-Grain CP Titanium // Materials. 2023. V. 16. P. 191. https://doi.org/10.3390/ma16010191
  15. Rudolf C., Goswami R., Kang W., Thomas J. Effects of electric current on the plastic deformation behavior of pure copper, iron, and titanium // Acta Mater. 2021. V. 209 (1). P. 116776. https://doi.org/10.1016/j.actamat.2021.116776
  16. Stolyarov V.V., Zhu Y.T., Alexandrov I.V., Lowe T.C., Valiev R.Z. Influence of ECAP routes on the microstructure and properties of pure Ti // Mater. Sci. Eng. A. 2001. V. 299. P. 59.
  17. Rudolf C., Goswami R., Kang W., Thomas J. Effects of electric current on the plastic deformation behavior of pure copper, iron, and titanium // Acta Mater. 2021. V. 209. P. 116776. https://doi.org/10.1016/j.actamat.2021.116776
  18. Демлер О., Герштейн Г., Далингер А., Нюрнбергер Ф., Епишин А., Молодов Д.А. Влияние импульсов электрического тока на деформационное поведение монокристаллов никелевого жаропрочного сплава cmsx-4 и подвижность малоугловой границы зерен в бикристаллах алюминия // Изв. РАН. Серия физическая. 2018. Т. 82. № 9. С. 1189. https://doi.org/10.1134/S0367676518090065
  19. Савенко В.С., Троицкий О.А., Гуненко А.В. Физические аспекты электропластической деформации металлов // Вестник Брестского университета, Серия 4, Физика. Математика. 2018. № 1. Р. 40.
  20. Zhao S., Zhang R., Chong Y. et al. Defect reconfiguration in a Ti–Al alloy via electroplasticity // Nat. Mater. 2021. V. 20. P. 468. https://doi.org/10.1038/s41563-020-00817-z
  21. Pakhomov M.A., Stolyarov V.V. Specific features of electroplastic effect in mono- and polycrystalline aluminum // Metal Sci. Heat Treat. 2021. V. 63. P. 236. https://doi.org/10.1007/s11041-021-00677-7
  22. Lee H.P., Esling C., Bunge H.J. Development of the Rolling Texture in Titanium // Textures and Microstructures. 1988. V. 7. P. 317.
  23. Zherebtsov S.V., Dyakonov G.S., Salem A.A., Malysheva S.P., Salishchev G.A., Semiatin S.L. Evolution of grain and subgrain structure during cold rolling of commercial-purity titanium // Mater. Sci. Eng. A. 2011. V. 528 (9). P. 3474. https://doi.org/10.1016/j.msea.2011.01.039
  24. Stolyarov V.V., Zeipper L., Mingler B., Zehetbauer M. Influence of post-deformation on CP-Ti processed by equal channel angular pressing // Mater. Sci. Eng. A. 2008. V. 476. P. 98. https://doi.org/10.1016/j.msea.2007.04.069
  25. Lee T., Magargee J., Kwan Ng.M., Cao J. Constitutive analysis of electrically-assisted tensile deformation of CP-Ti based on non-uniform thermal expansion, plastic softening and dynamic strain aging // Int. J. Plast. 2017. V. 94. P. 44. https://doi.org/10.1016/j.ijplas.2017.02.012

补充文件

附件文件
动作
1. JATS XML
2.

下载 (122KB)
3.

下载 (153KB)
4.

下载 (143KB)
5.

下载 (1MB)
6.

下载 (1MB)

版权所有 © В.В. Столяров, 2023

##common.cookie##