The Acoustic Impact on Aviation Aggregates Made of Polymer Composite Materials

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The features of the acoustic impact on aircraft aggregates made of polymer composite materials are investigated. A technique for setting the wave angle is described; it equalizes the scale factors of both measuring channels of the differential aggregate made of polymer composite materials and compensates for the cross-damping error. Analytical expressions are obtained for the scale factor and the zero offset of the differential aggregate made of polymer composite materials. This scale factor, in contrast to the discrete noise oscillation mode, does not depend on the resonant oscillation amplitude and frequency. The operating mode of the aggregate made of polymer composite materials is shown to have an ability to compensate for the resonator frequency difference, when measuring the angular velocity, by means of the control system.

Sobre autores

Minggong Sha

Northwestern Polytechnic University (NPU), School of Civil Aviation, Shaanxi, 710060, Xi’An, Beilin, People’s Republic of China; Yangtze River Delta Research Institute of NPU, Science and Education New Town, 215400, Taicang City, Jiangsu Province, People’s Republic of China

Email: 695792773@qq.com
КНР, Сиань; КНР, Тайцан

V. Goncharenko

Moscow Aviation Institute, 125993, Moscow, Russia

Email: 695792773@qq.com
Россия, Москва

V. Yurov

Karaganda Buketov University, 100024, Karaganda, Republic of Kazakhstan

Email: 695792773@qq.com
Казахстан, Караганда

V. Oleshko

Moscow Aviation Institute, 125993, Moscow, Russia

Email: oleshkovs@mai.ru
Россия, Москва

Ying Sun

Moscow Aviation Institute, 125993, Moscow, Russia

Autor responsável pela correspondência
Email: 695792773@qq.com
Россия, Москва

Bibliografia

  1. Adam A., Papamoschou D., Bogey C. Imprint of Vortical Structures on the Near-Field Pressure of a Turbulent Jet // AIAA J. 2022. V. 60 (3). P. 1578. https://doi.org/10.2514/1.J061010
  2. Gangipamula R., Ranjan P., Patil R.S. Study on fluid dynamic characteristics of a low specific speed centrifugal pump with emphasis on trimming operations // Int. J. of Heat and Fluid Flow. 2022. 95. https://doi.org/10.1016/j.ijheatfluidflow.2022.108952
  3. Liu J., Cong S., Song Y., Chen S., Wu D. Flow structure and acoustics of underwater imperfectly expanded supersonic gas jets // Shock Waves. 2022. https://doi.org/10.1007/s00193-021-01069-9
  4. Nikam S.R., Sharma S. Correlation in the Near and Far Field of Compressible Jet to Identify Noise Source Characteristics // Flow, Turbulence and Combustion. 2022. V. 108 (3). P. 739. https://doi.org/10.1007/s10494-021-00299-2
  5. Niki Y., Rajasegar R., Li Z., Musculus M.P.B., Garcia Oliver J.M., Takasaki K. Verification of diesel spray ignition phenomenon in dual-fuel diesel-piloted premixed natural gas engine // Int. J. of Engine Research. 2022. V. 23 (2). P. 180. https://doi.org/10.1177/1468087420983060
  6. Rego L., Avallone F., Ragni D., Casalino D. On the mechanisms of jet-installation noise reduction with flow-permeable trailing edges // J. of Sound and Vibration. 2022. 520. https://doi.org/10.1016/j.jsv.2021.116582
  7. Varé M., Bogey C. Generation of acoustic tones in round jets at a Mach number of 0.9 impinging on a plate with and without a hole // J. of Fluid Mechanics. 2022. 936. https://doi.org/10.1017/jfm.2022.47
  8. Wang X., Lian J., Ma B., Du S. Numerical simulations and predictions of low-frequency noises downstream spillway tunnel . Shuili Fadian Xuebao // J. of Hydroelectric Engineering. 2022. V. 41 (1). P. 103. https://doi.org/10.11660/slfdxb.20220111
  9. Webb N., Esfahani A., Leahy R., Samimy M. Active Control of Rectangular Supersonic Twin Jets using Perturbations: Effects and Mechanism // In AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022. https://doi.org/10.2514/6.2022-2401
  10. Zaman K.B.M.Q., Fagan A.F., Upadhyay P. Pressure fluctuations due to “trapped waves” in the initial region of compressible jets // J. of Fluid Mechanics. 2022. 931. https://doi.org/10.1017/jfm.2021.954

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (96KB)

Declaração de direitos autorais © М. Ша, В.И. Гончаренко, В.М. Юров, В.С. Олешко, И. Сунь, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies