Интенсивность шаржирования титанового сплава продуктами износа инструмента из карбида кремния при шлифовании
- Authors: Носенко В.А.1, Сердюков Н.Д.1, Кузнецов С.П.1, Харламов В.О.2
-
Affiliations:
- ФГБОУ ВО «Волгоградский государственный технический университет»
- Волгоградский государственный технический университет
- Issue: No 1 (2025)
- Pages: 108-117
- Section: ЭКСПЕРИМЕНТАЛЬНАЯ МЕХАНИКА. ДИАГНОСТИКА ИСПЫТАНИЯ
- URL: https://journals.rcsi.science/0235-7119/article/view/287524
- DOI: https://doi.org/10.31857/S0235711925010139
- EDN: https://elibrary.ru/EPMIKC
- ID: 287524
Cite item
Abstract
На основе обработки цифрового изображения шлифованной поверхности в обратно-рассеянных электронах и результатов рентгеноспектрального микроанализа разработана методика определения интенсивности шаржирования титанового сплава продуктами износа абразивного инструмента из карбида кремния. Определены численные значения показателей интенсивности шаржирования и законы их распределения. Установлено влияние радиальной подачи на интенсивность шаржирования.
About the authors
В. А. Носенко
ФГБОУ ВО «Волгоградский государственный технический университет»
Author for correspondence.
Email: vladim.nosenko2014@yandex.ru
Волжский политехнический институт (филиал)
Russian Federation, ВолжскийН. Д. Сердюков
ФГБОУ ВО «Волгоградский государственный технический университет»
Email: vladim.nosenko2014@yandex.ru
Волжский политехнический институт (филиал)
Russian Federation, ВолжскийС. П. Кузнецов
ФГБОУ ВО «Волгоградский государственный технический университет»
Email: vladim.nosenko2014@yandex.ru
Волжский политехнический институт (филиал)
Russian Federation, ВолжскийВ. О. Харламов
Волгоградский государственный технический университет
Email: vladim.nosenko2014@yandex.ru
Russian Federation, Волгоград
References
- Gialanella S., Malandruccolo A. Aerospace Alloys. Topics in Mining, Metallurgy and Materials Engineering. Cham, Switzerland: Springer, 2020. 570 p.
- Суслов А. Г., Безъязычный В. Ф., Базров Б. М. и др. Справочник технолога / Под общ. ред. А. Г. Суслова. М.: Инновационное машиностроение, 2019. 800 с.
- Junshuai Z., Biao Z., Wenfeng D. et al. Grinding Characteristics of MoS2-Coated Brazed CBN Grinding Wheels in Dry Grinding of Titanium Alloy // Chinese J. of Mech. Engin. 2023. V. 23 (109). P. 36–49. https://doi.org/10.1186/s10033-02300936-z
- Салов П. М., Носов Н. В., Салова Д. П. Контроль работоспособности шлифовального круга // Известия Самарского научного центра РАН. 2018. Т. 20. № 4 (2). С. 238–241.
- Mao C., Li X., Zhang M. et al. Wear behaviors of electroplated CBN grinding wheel with orderly-micro-grooves in grinding narrow-deep slot // The Int. J. of Adv. Manuf. Tech. 2023. P. 2857–2868. https://doi.org/10.1007/с00170-023-12509-4
- Безъязычный В. Ф., Голованов Д. С. Повышение качества полировальной обработки лопаток ГТД из титановых сплавов за счёт применения абразивного инструмента на гибкой основе с запрограммированным механизмом износа // Вестник РГАТА. 2022. № 3 (62). С. 57–62.
- Boud F., Carpenter C., Folkers J. et al. Abrasive waterjet cutting of a titanium alloy: The influence of abrasive morphology and mechanical properties on workpiece grit embedment and cut // J. of Mater. Proces. Technol. 2010. V. 210 (15). P. 2197–2205. https://doi.org/10.1016/j.jmatprotec.2010.08.006
- Носенко В. А., Сердюков Н. Д., Фетисов А. В. Перенос материала абразивного инструмента на поверхность титанового сплава в различные периоды шлифования кругом из карбида кремния // Проблемы машиностроения и надежности машин. 2022. № 1. С. 68–77. https://doi.org/10.31857/S0235711922010072
- Петровский В. А., Рубан А. Р., Хоменко Т. В., Мельников А. В. Износостойкость и совместимость исследуемых материалов для шарнирного узла черпаковой цепи // Вестник Астраханского государственного технического университета. 2023. № 3. С. 7–18.
- Dwyer-Joyce R. S. The life Cycle of a Debris Particle // Tribology and Interface Engineering Series. 2005. V. 48. P. 681–690. https://doi.org/10.1016/S0167-8922(05)80070-7
- Смыслов А. М., Таминдаров Д. Р. Электролитно-плазменное полирование в технологии формировании поверхности лопаток ГТД // Климовские чтения. Перспективные направления развития авиадвигателестроения: Сборник статей научно-технической конференции. Санкт-Петербург: ООО «Скифия-принт». 2022. С. 177–180. https://doi.org/10.53454/9785986206257_177
- Смоленцев В. П., Гончаров Е. В. Расчет технологических режимов гидроабразивного разделения материалов с наложением электрического поля // Вестник ВГТУ. 2012. № 4. С. 130–133.
- Chen F. L., Siores E., Patel K., Momber A. W. Minimising particle contamination at abrasive waterjet machined surfaces by a nozzle oscillation technique // Int. J. of Machine Tools & Manufacture. 2002. V. 42. P. 1385–1390. https://doi.org/10.1016/S0890-6955(02)00081-0
- Носенко В. А., Кузнецов С. П., Сердюков Н. Д. РФ Патент 2768518. Способ определения степени шаржирования металлических поверхностей абразивными зёрнами из сверхтвердых абразивных материалов, 2022.
- Носенко В. А., Белухин Р. А., Фетисов А. В., Морозова Л. К. Испытательный комплекс на базе прецизионного профилешлифовального станка с ЧПУ Chevalier модели Smart-B1224 // Известия Волгоградского государственного технического университета. 2016. № 5 (184). С. 35–39. https://api.semanticscholar.org/CorpusID:136116668
- Пухов Д. Э., Лаптева А. А. Учет неровности поверхности при электронно-зондовом энергодисперсионном анализе материалов в виде порошков // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2020. № 9. С. 28–38. https://doi.org/10.31857/S1028096020090149
- Гаршин А. П., Федотова С. М. Абразивные материалы и инструменты. Технология производства. СПб.: Политехнический университет, 2008. 385 с.
- Crow L. W., Shimizu K. Lognormal Distributions: Theory and Applications. New York: CRC Press LLC, 2020. 387 p.
- Ивченко Г. И., Медведев Ю. И. Математическая статистика. М.: Издательская группа URSS: 2023. 352 с.
Supplementary files
