Кинематика двухрядной планетарной передачи внутреннего зацепления с овальными шестернями на сателлите

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Механические передачи с некруглыми зубчатыми колесами вызывают интерес исследователей, изобретателей и инженеров вследствие высокой компактности таких механизмов, а также реализации широкого спектра передаточных функций. В статье исследуется кинематика планетарной передачи внутреннего зацепления с овальными зубчатыми колесами, которая позволяет реализовать возвратно-вращательное движение выходного вала. Построена кинематическая модель механизма, определен закон движения в виде аналога скорости и функции положения выходного звена. Разработан экспериментальный стенд предлагаемой планетарной передачи, на базе которого исследованы функции положения для трех вариантов механизма с различными кинематическими параметрами. Статистический анализ ошибок измерения показал адекватность построенной кинематической модели, что позволяет ее использовать в дальнейшем при динамических, силовых исследованиях и проектировании машин на базе предложенной планетарной передачи.

About the authors

А. А. Приходько

Кубанский государственный технологический университет

Author for correspondence.
Email: sannic92@gmil.com
Russian Federation, Краснодар

Г. В. Курапов

Кубанский государственный технологический университет

Email: sannic92@gmil.com
Russian Federation, Краснодар

Э. Ю. Азизов

Кубанский государственный технологический университет

Email: sannic92@gmil.com
Russian Federation, Краснодар

А. В. Новицкий

Кубанский государственный технологический университет

Email: sannic92@gmil.com
Russian Federation, Краснодар

References

  1. Addomine M., Figliolini G., Pennestrì E. A landmark in the history of non-circular gears design: The mechanical masterpiece of Dondi’s astrarium // Mechanism and Machine Theory. 2018. V. 122. Р. 219–232.
  2. Yu Y., Lin C., Hu Y. Study on simulation and experiment of non-circular gear surface topography in ball end milling // The Int. J. of Advanced Manuf. Technol. 2021. V. 114. P. 1913–1923.
  3. Zheng F., Hua L., Han X., Li B., Chen D. Synthesis of indexing mechanisms with non-circular gears // Mechanism and Machine Theory. 2016. V. 105. P. 108–128.
  4. Liu J. G., Tong Z. P., Yu G. H., Zhao X., Zhou H. L. Design and application of non-circular gear with cusp pitch curve // Machines. 2022. V. 10. № 11. P. 985.
  5. Liu D., Zhang T., Cao Y. Multi-Joint Bionic Mechanism Based on Non-Circular Gear Drive // Biomimetics. 2023. Т. 8. № 3. P. 272.
  6. Du F., Liu J., Qi P. Research on the seedling picking trajectory error of the gear train seedling picking mechanism considering tooth backlash // Engineering Reports. 2024. e12840.
  7. Li B., Hu J., Chen D. Rounding theory and method for the pitch curves of the variable center distance non-circular gear pair based on working conditions // Advances in Mechanical Engineering. 2024. V. 16. № 4.
  8. Gupta K., Jain N. K. On surface integrity of miniature spur gears manufactured by wire electrical discharge machining // The Int. J. of Advanced Manuf. Technol. 2014. V. 72. P. 1735.
  9. Gupta K., Jain N. K., Laubscher R. F. Spark erosion machining of miniature gears: a critical review // The Int. J. of Advanced Manuf. Technol. 2015. V. 80. P. 1863–1877.
  10. Castillo C., López-Martínez J., García-Vallejo D., Blanco-Claraco J. L. Synthesis of 1-DOF mechanisms for exact regular polygonal path generation based on non-circular gear transmissions // Mechanism and Machine Theory. 2024. V. 198. P. 105657.
  11. Madenci E., Guven I. The finite element method and applications in engineering using ANSYS. USA: Springer, 2015. 657 p.
  12. Xu G., Chen J., Zhao H. Numerical calculation and experiment of coupled dynamics of the differential velocity vane pump driven by the hybrid higher-order fourier non-circular gears // J. of Thermal Science. 2018. V. 27. P. 285–293.
  13. Prikhodko A. A., Smelyagin A. I., Tsybin A. D. Kinematics of planetary mechanisms with intermittent motion // Procedia Engineering. 2017. V. 206. P. 380–385.
  14. Prikhod’ko A. A., Smelyagin A. I. Kinematics of a Planetary Train with Elliptical Gears with Internal Gearing // J. of Mach. Manuf. and Reliab. 2021. V. 50. № 5. P. 412–418.
  15. Prikhod’ko A. A., Smelyagin A. I. Investigation of power consumption in a mixing device with swinging movement of the actuating element // Chemical and Petroleum Engineering. 2018. V. 54. № 3–4. P. 150–155.
  16. Litvin F. L., Fuentes A. Gear geometry and applied theory. Cambridge University Press, 2004. 800 p.
  17. Киреев С. О., Ершов Ю. В., Падалко Н. А. Определение центроид овальных шестерен //Известия высших учебных заведений. Северо-кавказский регион. Технические науки. 2009. № 6. С. 90–91.
  18. Бараш В. Я. Неопределенность и погрешность в современной метрологии // Законодательная и прикладная метрология. 2009. № 5. С. 15–20.
  19. Hall B. D., White D. R. An introduction to measurement uncertainty. Lower Hutt: Measurement Standards Laboratory of New Zealand, 2020. 50 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).