ОСОБЕННОСТИ СТРУКТУРЫ И СВОЙСТВ В РАСПЛАВЕ Ga70Bi30 КРИТИЧЕСКОГО СОСТАВА: ЭКСПЕРИМЕНТ И МЕТОД МОЛЕКУЛЯРНОЙ ДИНАМИКИ
- Авторы: Филиппов В.В.1, Балякин И.А.1, Юрьев А.А.1, Гельчинский Б.Р.1
-
Учреждения:
- Институт металлургии имени академика Н.А. Ватолина УрО РАН
- Выпуск: № 6 (2025)
- Страницы: 680–690
- Раздел: Статьи
- URL: https://journals.rcsi.science/0235-0106/article/view/355836
- DOI: https://doi.org/10.7868/S3034571525060106
- ID: 355836
Цитировать
Аннотация
Об авторах
В. В. Филиппов
Институт металлургии имени академика Н.А. Ватолина УрО РАНЕкатеринбург, Россия
И. А. Балякин
Институт металлургии имени академика Н.А. Ватолина УрО РАНЕкатеринбург, Россия
А. А. Юрьев
Институт металлургии имени академика Н.А. Ватолина УрО РАН
Email: yurev_anatoli@mail.ru
Екатеринбург, Россия
Б. Р. Гельчинский
Институт металлургии имени академика Н.А. Ватолина УрО РАНЕкатеринбург, Россия
Список литературы
- Predel. B. Bi-Ga (Bismuth-Gallium. In B-Ba – C-Zr. in: Landolt-Bornstein – Group IV Physical Chemistry. Vol. 5B. O. Madelung, Ed., Springer, 1992.
- Wignall G.D., Egelstaff P.A. Critical opalescence in binary liquid metal mixtures I. Temperature dependence. J. Phys. C: Solid State Phys. 1968. 1. P. 1088–1096. https://doi.org/10.1088/0022-3719/1/4/327
- Yagodin D.A., Filippov V.V., Popel P.S., Sidorov V.E., Son L.D. Density and ultrasound velocity in Ga-Bi melts. J. Phys. Conf. Ser. 2008. 98. P. 062019. https://doi.org/10.1088/1742-6596/98/6/062019.
- Vollmann J., Riedel D. The viscosity of liquid Bi–Ga alloys. J. Phys.: Condens. Matter. 1996. 8. P. 6175–6184. https://doi.org/10.1088/0953-8984/8/34/007
- Sklyarchuk V., Mudry S., Yakymovych A. Viscosity of Bi-Ga liquid alloys. J. Phys. Conf. Ser. 2008. 98. P. 062021. https://doi.org/10.1088/1742-6596/98/6/062021
- Adams P.D. Electrical resistivity of liquid binary alloys exhibiting a miscibility gap. Phys. Rev. Lett. 1970. 25. P. 1012–1014.
- Ginter G., Gasser J.G., Kleim R. The electrical resistivity of liquid bismuth, gallium and bismuth-gallium alloys. Phil. Mag. 1986. B 54. P. 543–552. https://doi.org/10.1080/13642818608236869
- Belashchenko D.K. Computer simulation of the properties of liquid metals: Gallium, lead, and bismuth. Russ. J. Phys. Chem. A. 2012. 86. P. 779–790. https://doi.org/10.1134/S0036024412050056
- Mokshin A.V., Khusnutdinoff R.M., Galimzyanov B.N., Brazhkin V.V. Extended short-range order determines the overall structure of liquid gallium. Phys. Chem. Chem. Phys. 2020. 22. P. 4122–4129. https://doi.org/10.1039/c9cp05219d
- Caspi E.N. et al. What is the structure of liquid Bismuth? J. Phys. Conf. Ser. 2012. 340. P. 012079. https://doi.org/10.1088/1742-6596/340/1/012079
- Kohn W., Sham L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965. 140. P. A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133
- Mishin Y. Machine-learning interatomic potentials for materials science. Acta Mater. 2021. 214. P. 116980. https://doi.org/10.1016/j.actamat.2021.116980
- Behler J., Parrinello M. Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces. Phys. Rev. Lett. 2007. 98. P. 146401. https://doi.org/10.1103/PhysRevLett.98.146401
- Balyakin I.A., Yuryev A.A., Filippov V.V., Gelchinski B.R. Viscosity of liquid gallium Neural network potential molecular dynamics and experimental stady. Comput. Mater. Sci. 2022. 215. P. 111802. https://doi.org/10.1016/j.commatsci.2022.111802
- Balyakin I.A., Yuryev A.A., Gelchinski B.R. Molecular Dynamics Simulation of the Immiscibility in Bi–Ga Melts. Russian Metallurgy (Metally). 2024. P. 1043–1047. https://doi.org/10.1134/S0036029524701994
- Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996. 54. P. 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169
- Zhang Y., Wang Y., Chen W., Zeng J., Zhang L., Wang H., E W. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models. Comput. Phys. Commun. 2020. 253. P. 107206. https://doi.org/10.1016/j.cpc.2020.107206
- Wang H., Zhang L., Han J., E W. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics Comput. Phys. Commun. 2018. 228. P. 178–184. https://doi.org/10.1016/j.cpc.2018.03.016
- Thompson A.P., Actulga H.M., Berger R., Bolintineanu D.S., Brown W.M., Crozier P.S., Veld P.J., Kohlmeyer A., Moore S.G., Nguyen T.D., Shan R., Stevens M.J., Tranchida J., Trott C., Plimpton S.J. Comput. Phys. Commun. 2022. 271. P. 108171. https://doi.org/10.1016/j.cpc.2021.108171
- Filippov V.V., Uporov S.A., Bykov V.A. et al. An automated setup for measuring the viscosity of metal melts. Instrum Exp Tech. 2016. 59. P. 305–311. https://doi.org/10.1134/S0020441216010036
- Inui M., Takeda S., Uechi T. Ultrasonic Velocity and Density Measurement of Liquid Bi–Ga Alloys with Miscibility Gap Region. J. Physical Society of Japan. 1992. 61. P. 3203–3208. https://doi.org/10.1143/JPSJ.61.3203
- Darken L.S. Diffusion, Mobility and Their Interrelation through Free Energy in Binary Metallic Systems. Trans. AIME. 1948. 175. P. 184–201.
- Khairulin R.A., Stankus S.V., Sorokin A.L. Determination of the two-melt phase boundary and study of the binary diffusion in liquid Bi–Ga system with a miscibility gap. J. Non-Cryst. Solids. 2002. 297. P. 120–130.
- Menz W., Sauerwald F. Viskositatsmessungen XVIII: Die Viskositat der schmelzflussigen E-(Entmischungs-) systeme Ga-Cd, Ga-Hg, Ga-Bi. Z. Phys. Chem. 1966. 232. P. 134–137.
Дополнительные файлы


