FEATURES OF STRUCTURE AND PROPERTIES IN Ga70Bi30 DEMIXING MELT: EXPERIMENT AND MOLECULAR DYNAMICS METHOD
- Авторлар: Filippov V.V.1, Balyakin I.A.1, Yuryev A.A.1, Gelchinski B.R.1
-
Мекемелер:
- Vatolin Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences
- Шығарылым: № 6 (2025)
- Беттер: 680–690
- Бөлім: Articles
- URL: https://journals.rcsi.science/0235-0106/article/view/355836
- DOI: https://doi.org/10.7868/S3034571525060106
- ID: 355836
Дәйексөз келтіру
Аннотация
Авторлар туралы
V. Filippov
Vatolin Institute of Metallurgy of the Ural Branch of the Russian Academy of SciencesEkaterinburg, Russia
I. Balyakin
Vatolin Institute of Metallurgy of the Ural Branch of the Russian Academy of SciencesEkaterinburg, Russia
A. Yuryev
Vatolin Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences
Email: yurev_anatoli@mail.ru
Ekaterinburg, Russia
B. Gelchinski
Vatolin Institute of Metallurgy of the Ural Branch of the Russian Academy of SciencesEkaterinburg, Russia
Әдебиет тізімі
- Predel. B. Bi-Ga (Bismuth-Gallium. In B-Ba – C-Zr. in: Landolt-Bornstein – Group IV Physical Chemistry. Vol. 5B. O. Madelung, Ed., Springer, 1992.
- Wignall G.D., Egelstaff P.A. Critical opalescence in binary liquid metal mixtures I. Temperature dependence. J. Phys. C: Solid State Phys. 1968. 1. P. 1088–1096. https://doi.org/10.1088/0022-3719/1/4/327
- Yagodin D.A., Filippov V.V., Popel P.S., Sidorov V.E., Son L.D. Density and ultrasound velocity in Ga-Bi melts. J. Phys. Conf. Ser. 2008. 98. P. 062019. https://doi.org/10.1088/1742-6596/98/6/062019.
- Vollmann J., Riedel D. The viscosity of liquid Bi–Ga alloys. J. Phys.: Condens. Matter. 1996. 8. P. 6175–6184. https://doi.org/10.1088/0953-8984/8/34/007
- Sklyarchuk V., Mudry S., Yakymovych A. Viscosity of Bi-Ga liquid alloys. J. Phys. Conf. Ser. 2008. 98. P. 062021. https://doi.org/10.1088/1742-6596/98/6/062021
- Adams P.D. Electrical resistivity of liquid binary alloys exhibiting a miscibility gap. Phys. Rev. Lett. 1970. 25. P. 1012–1014.
- Ginter G., Gasser J.G., Kleim R. The electrical resistivity of liquid bismuth, gallium and bismuth-gallium alloys. Phil. Mag. 1986. B 54. P. 543–552. https://doi.org/10.1080/13642818608236869
- Belashchenko D.K. Computer simulation of the properties of liquid metals: Gallium, lead, and bismuth. Russ. J. Phys. Chem. A. 2012. 86. P. 779–790. https://doi.org/10.1134/S0036024412050056
- Mokshin A.V., Khusnutdinoff R.M., Galimzyanov B.N., Brazhkin V.V. Extended short-range order determines the overall structure of liquid gallium. Phys. Chem. Chem. Phys. 2020. 22. P. 4122–4129. https://doi.org/10.1039/c9cp05219d
- Caspi E.N. et al. What is the structure of liquid Bismuth? J. Phys. Conf. Ser. 2012. 340. P. 012079. https://doi.org/10.1088/1742-6596/340/1/012079
- Kohn W., Sham L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965. 140. P. A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133
- Mishin Y. Machine-learning interatomic potentials for materials science. Acta Mater. 2021. 214. P. 116980. https://doi.org/10.1016/j.actamat.2021.116980
- Behler J., Parrinello M. Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces. Phys. Rev. Lett. 2007. 98. P. 146401. https://doi.org/10.1103/PhysRevLett.98.146401
- Balyakin I.A., Yuryev A.A., Filippov V.V., Gelchinski B.R. Viscosity of liquid gallium Neural network potential molecular dynamics and experimental stady. Comput. Mater. Sci. 2022. 215. P. 111802. https://doi.org/10.1016/j.commatsci.2022.111802
- Balyakin I.A., Yuryev A.A., Gelchinski B.R. Molecular Dynamics Simulation of the Immiscibility in Bi–Ga Melts. Russian Metallurgy (Metally). 2024. P. 1043–1047. https://doi.org/10.1134/S0036029524701994
- Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996. 54. P. 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169
- Zhang Y., Wang Y., Chen W., Zeng J., Zhang L., Wang H., E W. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models. Comput. Phys. Commun. 2020. 253. P. 107206. https://doi.org/10.1016/j.cpc.2020.107206
- Wang H., Zhang L., Han J., E W. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics Comput. Phys. Commun. 2018. 228. P. 178–184. https://doi.org/10.1016/j.cpc.2018.03.016
- Thompson A.P., Actulga H.M., Berger R., Bolintineanu D.S., Brown W.M., Crozier P.S., Veld P.J., Kohlmeyer A., Moore S.G., Nguyen T.D., Shan R., Stevens M.J., Tranchida J., Trott C., Plimpton S.J. Comput. Phys. Commun. 2022. 271. P. 108171. https://doi.org/10.1016/j.cpc.2021.108171
- Filippov V.V., Uporov S.A., Bykov V.A. et al. An automated setup for measuring the viscosity of metal melts. Instrum Exp Tech. 2016. 59. P. 305–311. https://doi.org/10.1134/S0020441216010036
- Inui M., Takeda S., Uechi T. Ultrasonic Velocity and Density Measurement of Liquid Bi–Ga Alloys with Miscibility Gap Region. J. Physical Society of Japan. 1992. 61. P. 3203–3208. https://doi.org/10.1143/JPSJ.61.3203
- Darken L.S. Diffusion, Mobility and Their Interrelation through Free Energy in Binary Metallic Systems. Trans. AIME. 1948. 175. P. 184–201.
- Khairulin R.A., Stankus S.V., Sorokin A.L. Determination of the two-melt phase boundary and study of the binary diffusion in liquid Bi–Ga system with a miscibility gap. J. Non-Cryst. Solids. 2002. 297. P. 120–130.
- Menz W., Sauerwald F. Viskositatsmessungen XVIII: Die Viskositat der schmelzflussigen E-(Entmischungs-) systeme Ga-Cd, Ga-Hg, Ga-Bi. Z. Phys. Chem. 1966. 232. P. 134–137.
Қосымша файлдар

