Контролируемый синтез наночастиц высокоэнтропийных материалов. Оптимизация традиционных и создание инновационных стратегий

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В последнее десятилетие резко возросло разнообразие высокоэнтропийных материалов (ВЭМ) в том числе за счет расширения исследований в область аморфных, нано- и гетероструктур. Интерес к наноразмерным ВЭМ связан, прежде всего, с их потенциальным применением в различных областях, таких как возобновляемая и «зеленая» энергетика, катализ, хранение водорода, защита поверхности и др. Развитие нанотехнологий позволило разработать инновационный дизайн наноразмерных ВЭМ с принципиально новыми структурами, обладающими уникальными физическими и химическими свойствами. Решаются проблемы контролируемого синтеза с точно заданными параметрами химического состава, микроструктуры и морфологии. При этом происходит модернизация традиционных технологий, таких как быстрый пиролиз, механическое сплавление, магнетронное распыление, электрохимический синтез и др. Наряду с этим появились инновационные технологии синтеза, такие как карботермический удар, метод управляемого спилловера водорода. В обзоре проанализированы методы синтеза наноразмерных ВЭМ для различных применений, которые были разработаны в последние 6–7 лет. Большинство из них является результатом модернизации традиционных способов, а другая группа методик представляет инновационные решения, стимулированные и вдохновленные феноменом ВЭМ.

Полный текст

Доступ закрыт

Об авторах

В. А. Полухин

Институт Металлургии УрО РАН

Автор, ответственный за переписку.
Email: p.valery47@yandex.ru
Россия, Екатеринбург

С. Х. Эстемирова

Институт Металлургии УрО РАН

Email: esveta100@mail.ru
Россия, Екатеринбург

Список литературы

  1. Fu M., Ma X., Zhao K., Li X., Su D. // iScience. 2021. 24. № 3. P. 102177. https://doi.org/10.1016/j.isci.2021.102177
  2. Gelchinski B.R., Balyakin I.A., Yuryev A.A., Rempel A.A. High-entropy alloys: properties and prospects of application as protective coatings // Russ. Chem. Rev. 2022. 91. № 6). P. RCR5023.
  3. Li F.C., Liu T., Zhang J.Y., et al. // Mater. Today Adv. 2019. 4. P. 100027. https://doi.org/10.1016/j.mtadv.2019.100027
  4. Pavithra C.L.P., Dey S.R. // Nano Select. 2023. 4. P. 48–78. https://doi.org/10.1002/nano.202200081
  5. Yeh J.-W., Chen S.-K., Lin S.-J., et al. // Adv. Eng. Mater. 2004. 6. P. 299–303. https://doi.org/10.1002/adem.200300567
  6. Miracle D.B. High entropy alloys as a bold step forward in alloy development // Nat Commun. 2019. 10. P. 1805.
  7. Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts // Acta Mater. 2017. 122. P. 448–511.
  8. Braic V., Vladescu A., Balaceanu M., et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings // Surf. Coat. Technol. 2012. 211. P. 117–121.
  9. Lin M–I., Tsai M-H., Shen W-J., Yeh J-W. Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films // Thin Solid Films. 2010. 518. P. 2732–2737.
  10. Gu J., Zou J., Sun S.K. et al. // Sci. China Mater. 2019. 62. P. 1898–1909. https://doi.org/10.1007/s40843–019–9469–4
  11. Chang S-Y., Lin S-Y., Huang Y-C., Wu C.-L. // Surf. Coat. Technol. 2010. 204. P. 3307–3314. https://doi.org/10.1016/j.surfcoat.2010.03.041
  12. Cantor B. Multicomponent high-entropy Cantor alloys // Prog. Mater. Sci. 2021. 120. P. 100754.
  13. Pogrebnjak A.D., Bagdasaryan A.A., Yakushchenko I.V., Beresnev V.M. The structure and properties of high-entropy alloys and nitride coatings based on them // Russ. Chem. Rev. 2014. 83. № 11. P. 1027–1061.
  14. Gao M.C., Miracle D.B., Maurice D., Yan X., Zhang Y., Hawk J.A. High-entropy functional materials // J. Mater. Res. 2018. 33. № 19. P. 3138–3155.
  15. Perrin A., Sorescu M., Burton M.T. et al. // JOM. 2017. 69. 2125–2129. https://doi.org/10.1007/s11837–017–2523–3
  16. Law J.Y., Franco V. // J. Mater. Res. 2023. 38. P. 37–51. https://doi.org/10.1557/s43578–022–00712–0
  17. Fan Z., Wang H., Wu Y., et al. // RSC Adv. 2016. 6. P. 52164–52170. https://doi.org/10.1039/C5RA28088E
  18. Zhao K., Li X., Su D. // Acta Phys. Chim. Sin. 2021. 37. № 7. P. 2009077 (1–24). https://doi.org/10.3866/pku.whxb202009077
  19. Kashkarov E., Krotkevich D., Koptsev M., et al. // Membranes. 2022. 12. P. 1157. https://doi.org/10.3390/membranes12111157
  20. Lei Z., Liu L., Zhao H. et al. // Nat Commun. 2020. 11. P. 299. https://doi.org/10.1038/s41467–019–14170–6
  21. Oses C., Toher C., Curtarolo S. High-entropy ceramics // Nat Rev Mater. 2020. 5. P. 295–309.
  22. Bérardan D., Franger S., Meena A.K., Dragoe N. Room temperature lithium superionic conductivity in high entropy oxides // J. Mater. Chem. A. 2016. 4. P. 9536–9541.
  23. X. Huang, G. Yang, S. Li, et al. // J. Energy Chem. 2022. 68. P. 721–751. https://doi.org/10.1016/j.jechem.2021.12.026
  24. Yao Y.G., Dong Q., Brozena A., et al. High-entropy nanoparticles: synthesis-structure-property relationships and data-driven discovery // Science. 2022. 376. P. eabn3103.
  25. Wan W., Liang K., Zhu P., He P., Zhang S. Recent advances in the synthesis and fabrication methods of high-entropy alloy nanoparticles // J. Mater. Sci. Technol. 2024. 178. P. 226–246.
  26. Yu L., Zeng K., Li C., et al. // Carbon Energy. 2022. 4. № 5. P. 731–761. https://doi.org/10.1002/cey2.228
  27. Zheng H., Luo G., Zhang A., Lu X., He L. // ChemCatChem. 2020. 13. P. 806–817. https://doi.org/10.1002/cctc.202001163
  28. Cahn RW, Haasen P. Physical metallurgy. 4th ed. Cambridge: Univ Press; 1996.
  29. Zhang Y., Zhou Y.J., JLin. P., Chen G.L., Liaw P.K. Solid-Solution Phase Formation Rules for Multi-component Alloys // Adv. Eng. Mater. 2008. 10. № 6. P. 534–538.
  30. Guo S., Liu C.T. // Prog. Nat. Sci. 2011. 21. № 6. P. 433–446. https://doi.org/10.1016/S1002–0071(12)60080-X
  31. Yang X., Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys // Mater. Chem. Phys. 2012. 132. P. 233–238.
  32. Guo S., Ng C., Lu J., Liu C.T. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys // J. Appl. Phys. 2011. 109. P. 103505.
  33. Wang C.W., Wang H.M., Li G.R., et al. // Vacuum. 2020. 181. P. 109738.
  34. https://doi.org/10.1016/j.vacuum.2020.109738
  35. Tsai M-H., Yeh J-W. High-Entropy Alloys: A Critical Review // Materials Research Letters. 2014. 2. № 3. P. 107–123.
  36. Liu W.H., Wu Y., He J.Y., Nieh T.G., Lu Z.P. // Scr. Mater. 2013. 68. P. 526–529. http://dx.doi.org/10.1016/j.scriptamat.2012.12.002
  37. Xiao L., Zheng Z., Huang P., Wang F. Superior anticorrosion performance of crystal-amorphous FeMnCoCrNi high-entropy alloy // Scr. Mater. 2022. 210. P. 114454.
  38. Ranganathan S. Alloyed pleasures: Multimetallic cocktails // Curr Sci. 2003. 85. № 10. P. 1404–1406.
  39. Lei H., Chen C., Ye X. et al. // J. Mater. Res. Technol. 2024. 28. P. 3765–3774. https://doi.org/10.1016/j.jmrt.2024.01.003
  40. B. Gludovatz, A. Hohenwarter, D. Catoor, et al. A fracture-resistant high-entropy alloy for cryogenic applications // Science. 2014. 345. P. 1153.
  41. Fan X.J., Qu R.T., Zhang Z.F. // J. Mater. Sci. Technol. 2022. 123. P. 70–77. https://doi.org/10.1016/j.jmst.2022.01.017
  42. Ju S-P., Lee I-J., Chen H-Y. // J. Alloys Compd. 2021. 858. P. 157681. https://doi.org/10.1016/j.jallcom.2020.157681
  43. Yan J., Yin S., Asta M. et al. // Nat Commun. 2022. 13. P. 2789. https://doi.org/10.1038/s41467–022–30524-z
  44. Song B., Yang Y., Rabbani M., et al. In situ oxidation studies of high-entropy alloy nanoparticles // ACS Nano. 2020. 14. № 11. P. 15131–15143.
  45. Xiang T., Du P., Cai Z., et al. // J. Mater. Sci. Technol. 2022. 117. P. 196–206 https://doi.org/10.1016/j.jmst.2021.12.014
  46. Song H., Lee S., Lee K. // Int J Refract Hard Met 2021. 99. P. 105595. https://doi.org/10.1016/j.ijrmhm.2021.105595
  47. Daryoush S., Mirzadeh H., Ataie A. // Mater. Lett. 2022. 307. P. 131098. https://doi.org/10.1016/j.matlet.2021.131098
  48. Kipkirui N.G., Lin T-T., Kiplangat R.S., et al. HiPIMS and RF magnetron sputtered Al0.5CoCrFeNi2Ti0.5 HEA thin-film coatings: Synthesis and characterization // Surf. Coat. Technol. 2022. 449. P. 128988. https://doi.org/10.1016/j.surfcoat.2022.128988
  49. Zhu Z., Meng H., Ren P. CoNiWReP high entropy alloy coatings prepared by pulse current electrodeposition from aqueous solution // Colloids Surf. A Physicochem. Eng. Asp. 2022. 648. P. 129404.
  50. Sun Y., Dai S., High-entropy materials for catalysis: A new frontier // Sci. Adv. 2021. 7. P. eabg1600.
  51. Takeuchi A., Inoue A., Makino A. // Mater. Sci. Eng. A. 1997. 226–228. P. 636–640. https://doi.org/10.1016/S0921–5093(96)10698–5
  52. Inoue A., Takeuchi A., Makino A., Masumoto T. Hard Magnetic Properties of Nanocrystalline Fe–Nd–B Alloys Containing α-Fe and Intergranular Amorphous Phase // Mater. Trans. 1995. 36. № 5. P. 676–685.
  53. Yoshizawa Y., Oguma S., Yamauchi K. New Febased soft magnetic alloys composed of ultrafine grain structure // J. Appl. Phys. 1988. 64. P. 6044.
  54. Belyakova R.M., Kurbanova E.D., Polukhin V.A. // Physical and chemical aspects of the study of clusters nanostructures and nanomaterials. 2022. 14. P. 512–520. https://doi.org/10.26456/pcascnn/2022.14.512
  55. Kulik T. // J Non Cryst Solids. 2001. 287. № 1. P. 145–161. https://doi.org/10.1016/S0022–3093(01)00627–5
  56. Vatolin N.A., Polukhin V.A., Sidorov N.I. // Russ. Metall. 2021. 2021. P. 905–907. https://doi.org/10.1134/S0036029521080206
  57. Li J., Lu K., Zhao X., et al. // J. Mater. Sci. Technol. 2022. 131. P. 185–194. https://doi.org/10.1016/j.jmst.2022.06.003.
  58. Tripathy B., Malladi S.R.K., Bhattacharjee P.P. // Mater. Sci. Eng. A. 2022. 831. P. 142190. https://doi.org/10.1016/j.msea.2021.142190.
  59. Sun Y.Y., Song M., Liao X.Z., Sha G., He Y.H. Effects of isothermal annealing on the microstructures and mechanical properties of a FeCuSiBAl amorphous alloy // Mater. Sci. Eng. A. 2012. 543. P. 145–151.
  60. Gao S., Hao S., Huang Z. et al. // Nat Commun. 2020. 11. P. 2016. https://doi.org/10.1038/s41467–020–15934–1.
  61. Wong A., Liu Q., Griffin S., et al. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports // Science. 2017. 358. P. 1427–1430.
  62. Ding K., Cullen D.A., Zhang L., et al. // Science. 2018. 362. P. 560–564. https://doi.org/10.1126/science.aau4414
  63. Fojtik A., Giersig M., Henglein A. // Phys. Chem. 1993. 97. № 11. P. 1493–1496. https://doi.org/10.1002/bbpc.19930971112
  64. Neddersen J., Chumanov G., Cotton T.M. Laser Ablation of Metals: A New Method for Preparing SERS Active Colloids // Appl. Spectrosc. 1993. 47. № 12. P. 1959–1964.
  65. Waag F., Li Y., Ziefuß A.R., et al. Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles // RSC Advances. 2019. 9. P. 18547–18558.
  66. Jahangiri H., Morova Y., Asghari A., et al. // Intermetallics. 2023. 156. P. 107834. https://doi.org/10.1016/j.intermet.2023.107834
  67. Rawat R., Singh B.K., Tiwari A., et al. // J. Alloys Compd. 2022. 927. P. 166905. https://doi.org/10.1016/j.jallcom.2022.166905
  68. Salemi F., Abbasi M.H., Karimzadeh F. // J. Alloys Compd. 2016. 685. P. 278e286. http://dx.doi.org/10.1016/j.jallcom.2016.05.274
  69. Shkodich N.F., Kovalev I.D., Kuskov K.V., et al. Fast mechanical synthesis, structure evolution, and thermal stability of nanostructured CoCrFeNiCu high entropy alloy // J. Alloys Compd. 2022. 893. P. 61839.
  70. Xu W., Chen H., Jie K., et al. // Angew. Chem. Int. Ed. 2019. 58. P. 5018–5022. https://doi.org/10.1002/anie.201900787
  71. Butova V.V., Soldatov M.A., Guda A.A., et al. Metal-organic frameworks: structure, properties, methods of synthesis and characterization // Russ. Chem. Rev. 2016. 85. P. 280.
  72. Kumar N., Tiwary C.S. Biswas K. // J Mater Sci. 2018. 53. P. 13411–13423. https://doi.org/10.1007/s10853–018–2485-z
  73. Arora N., Sharma N.N. // Diam Relat Mater. 2014. 50. P. 135–150. http://dx.doi.org/10.1016/j.diamond.2014.10.001
  74. Khan W., Sharma R., Saini P. Carbon nanotube-based polymer composites: Synthesis, properties and applications // In Carbon Nanotubes Current Progress of their Polymer Composites. IntechOpen: London. UK. 2016.
  75. Mao A., Ding P., Quan F., et al. // J. Alloys Compd. 2018. 735. P. 1167–1175. https://doi.org/10.1016/j.jallcom.2017.11.233
  76. Liao Y., Li Y., Ji L., et al. // Acta Mater. 2022. 240. P. 118338. https://doi.org/10.1016/j.actamat.2022.118338
  77. Bai H., Su R., Zhao R.Z., et al. // J. Mater. Sci. Technol. 2024. 177. P. 133–141. https://doi.org/10.1016/j.jmst.2023.07.074
  78. Lunga J-K., Huanga J-C., Tien D-C., et al. Preparation of gold nanoparticles by arc discharge in water // J. Alloys Compd. 2007. 434–435. P. 655–658.
  79. Wu Q., Wang Z., He F. et al. High Entropy Alloys: From Bulk Metallic Materials to Nanoparticles // Metall Mater Trans A. 2018. 49. P. 4986–4990.
  80. Feng J., Chen D., Pikhitsa P.V., et al. // Matter. 2020. 3. № 5. P. 1646–1663. https://doi.org/10.1016/j.matt.2020.07.027
  81. Liu M., Zhang Z., Okejiri F., et al. // Adv. Mater. Interfaces. 2019. 6. P. 1900015. https://doi.org/10.1002/admi.201900015
  82. Singh M.P., Srivastava C. Synthesis and electron microscopy of high entropy alloy nanoparticles // Mater. Lett. 2015. 160. P. 419–422.
  83. Feng G., Ning F., Song J., et al. // J. Am. Chem. Soc. 2021. 143. № 41. P. 17117–17127. https://doi.org/10.1021/jacs.1c07643
  84. Wu D., Kusada K., Yamamoto T., et al. // Chem. Sci. 2020. 11. P. 12731. https://doi.org/10.1039/D0SC02351E
  85. Jin Y., Li R., Zhang X., et al. Ultrafine high-entropy alloy nanoparticles for extremely superior electrocatalytic methanol oxidation // Mater. Lett. 2023. 344. P. 134421.
  86. Wei M., Sun Y., Ai F., et al. // Appl. Catal. B. 2023. 334. P. 122814. https://doi.org/10.1016/j.apcatb.2023.122814
  87. Okejiri F., Yang Z., Chen H. et al. // Nano Res. 2022. 15. P. 4792–4798. https://doi.org/10.1007/s12274–021–3760-x
  88. Okejiri F., Fan J., Huang Z., et al. // iScience. 2022. 25. № 5. P. 104214. https://doi.org/10.1016/j.isci.2022.104214
  89. Rekha M.Y., Mallik N., Srivastava C. First Report on High Entropy Alloy Nanoparticle Decorated Graphene // Sci Rep. 2018. 8. P. 8737.
  90. Wang A-L., Wan H-C., Xu H., et al. // Electrochim. Acta. 2014. 127. P. 448–453. https://doi.org/10.1016/j.electacta.2014.02.076
  91. Huang K., Zhang B., Wu J., et al. // J. Mater. Chem. A. 2020. 8. P. 11938–11947. https://doi.org/10.1039/D0TA02125C
  92. Tsukamoto T., Kambe T., Nakao A. et al. // Nat Commun. 2018. 9. P. 3873. https://doi.org/10.1038/s41467–018–06422–8
  93. Li H., Zhu H., Shen Q., et al. // Chem. Commun. 2021. 57. P. 2637. https://doi.org/10.1039/D0CC07345H
  94. Zhu G., Jiang Y., Yang H., et al. // Adv. Mater. 2022. 34. P. 2110128. https://doi.org/10.1002/adma.202110128
  95. Tang J., Xu J.L., Ye Z.G., Li X.B., Luo J.M. // J. Mater. Sci. Technol. 2021. 79. P. 171–177. https://doi.org/10.1016/j.jmst.2020.10.079
  96. Tang J., Xu J.L., Ye Z.G., et al. // J. Alloys Compd. 2021. 885. P. 160995. https://doi.org/10.1016/j.jallcom.2021.160995
  97. H. Qiao, M.T. Saray, X. Wang, et al. Scalable Synthesis of High Entropy Alloy Nanoparticles by Microwave Heating // ACS Nano 2021. 15. 9. P. 14928–14937.
  98. Nair R.B., Arora H.S., Boyana A.V., Saiteja P., Grewal H.S., Tribological behavior of microwave synthesized high entropy alloy claddings // Wear. 2019. 436–437. P. 203028.
  99. M. Kheradmandfard, H. Minouei, N. Tsvetkov, et al. // Mater. Chem. Phys. 2021. 262. P. 124265. https://doi.org/10.1016/j.matchemphys.2021.124265
  100. Ren L., Liu J., Liu X., et al. Rapid synthesis of high-entropy antimonides under air atmosphere using microwave method to ultra-high energy density supercapacitors // J. Alloys Compd. 2023. 967. P. 171816. https://doi.org/10.1016/j.jallcom.2023.171816
  101. Wang H.M., Su W.X., Liu J.Q., et al. // J. Mater. Res. and Technology, 2023. 24. P. 8618–8634. https://doi.org/10.1016/j.jmrt.2023.05.100
  102. Gao L., Li G., Wang H., Yan Y. // Materials Characterization. 2022. 189. P. 111993. https://doi.org/10.1016/j.matchar.2022.111993
  103. König D., Richter K., Siegel A., Mudring A.-V. Ludwig A. // Adv. Funct. Mater. 2014. 24. P. 2049–2056. https://doi.org/10.1002/adfm.201303140
  104. Shi Y., Yang B., Rack P.D., et al. // Mater. Des. 2020. 195. P. 109018. https://doi.org/10.1016/j.matdes.2020.109018
  105. Schwarz H., Uhlig T., Lindner T., et al. // Coatings. 2022. 12. P. 269. https://doi.org/10.3390/coatings12020269
  106. Cheng C., Zhang X., Haché M.J.R. et al. // Nano Res. 2022. 15. P. 4873–4879. https://doi.org/10.1007/s12274–021–3805–1
  107. Löffler T., Meyer H., Savan A., et al. Discovery of a multinary noble metal–free oxygen reduction catalyst // Adv. Energy Mater. 2018. 8. № 34. P. 1802269.
  108. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys // Mater. Sci. Eng. A. 2004. 375–377. P. 213–218.
  109. Garzón-Manjón A., Meyer H., Grochla D., et al. // Nanomaterials. 2018. 8. P. 903. https://doi.org/10.3390/nano8110903
  110. Sang Q., Hao S., Han J., Ding Y. Dealloyednanoporous materials for electrochemical energy conversion and storage // EnergyChem. 2022. 4. № 1. P. 100069.
  111. Asao N. Nanocatalysts fabricated by a dealloying method // The Chemical Record. 2015. 15. P. 964–978.
  112. Hakamada M., Mabuchi M. Fabrication, Microstructure, and Properties of Nanoporous Pd, Ni, and Their Alloys by Dealloying // Crit. Rev. Solid State Mater. Sci. 2013. 38. № 4. P. 262–285.
  113. Liu H., Qin H., Kang J., et al. // Chem. Eng. J. 2022. 435. № 1. P. 134898. https://doi.org/10.1016/j.cej.2022.134898
  114. Qiu H-J., Fang G., Wen Y., et al. // J. Mater. Chem. A. 2019. 7. P. 6499–6506. https://doi.org/10.1039/C9TA00505F
  115. Jin Z., Lv J., Jia H.L., et al. // Small. 2019. 15. P. 1904180. https://doi.org/10.1002/smll.201904180
  116. Li S., Tang X., Jia H., et al. // Journal of Catalysis. 2020. 383. P. 164–171. https://doi.org/10.1016/j.jcat.2020.01.024
  117. Fang G., Gao J., Lv J., et al. // Appl. Catal. B. 2020. 268. P. 118431. https://doi.org/10.1016/j.apcatb.2019.118431
  118. Yoshizaki T., Fujita T. // J. Alloys Compd. 2023. 968. P. 172056. https://doi.org/10.1016/j.jallcom.2023.172056
  119. Abid T., Akram M.A., Yaqub T.B., et al. // J. Alloys Compd. 2024. 970. P. 172633. https://doi.org/10.1016/j.jallcom.2023.172633
  120. Zeng L., You C., Cai X., et al. // J. Mater. Res. and Technology. 2020. 9. № 3. P. 6909–6915. https://doi.org/10.1016/j.jmrt.2020.01.018
  121. Joo S-H., Okulov I.V., Kato H. // J. Mater. Res. and Technology. 2021. 14. P. 2945–2953. https://doi.org/10.1016/j.jmrt.2021.08.100
  122. Okulov A.V., Joo S.-H., Kim, H.S. et al. Nanoporous high-entropy alloy by liquid metal dealloying // Metals. 2020. 10. P. 1396.
  123. Mori K., Hashimoto N., Kamiuchi N. et al. // Nat Commun. 2021. 12. P. 3884. https://doi.org/10.1038/s41467–021–24228-z
  124. Y. Yao, Z. Huang, P. Xie, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles // Science. 2018. 359. P. 1489–1494.
  125. Cui M., Yang C., Hwang S., et al. Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition // Sci. Adv. 2022. 8. № 4. https://doi.org/10.1126/sciadv.abm4322
  126. Abdelhafiz A., Wang B., Harutyunyan A.R., Li J. // Adv. Energy Mater. 2022. 12. P. 2200742. https://doi.org/10.1002/aenm.202200742
  127. El-Atwani O., Li N., Li M., et al. // Sci. Adv. 2019. 5. № 3. https://doi.org/10.1126/sciadv.aav2002
  128. Su Z., Ding J., Song M., et al. // Acta Mater. 2023. 245. P. 118662. https://doi.org/10.1016/j.actamat.2022.118662.
  129. Cheng Z., Sun J., Gao X., et al. // J. Alloys Compd. 023. 930. № 2. P. 166768. https://doi.org/10.1016/j.jallcom.2022.166768.
  130. Wu H., Zhang S., Wang Z.Y., et al. // International Int J Refract Hard Met 2022. 102. P. 105721. https://doi.org/10.1016/j.ijrmhm.2021.105721.
  131. Wen X., Cui X., Jin G., et al. // Intermetallics. 2023. 156. P. 107851. https://doi.org/10.1016/j.intermet.2023.107851.
  132. He R., Wu M., Jie D., et al. // Surf. Coat. Technol. 2023. 473. P. 130026. https://doi.org/10.1016/j.surfcoat.2023.130026.
  133. Lindner T., Löbel M., Sattler B., Lampke T. // Surf. Coat. Technol. 2019. 371. P. 389–394. https://doi.org/10.1016/j.surfcoat.2018.10.017.
  134. Yang R., Guo X., Yang H., Qiao J. // Surf. Coat. Technol. 2023. 464. P. 129572. https://doi.org/10.1016/j.surfcoat.2023.129572.
  135. Gloriant T. // J. Non Cryst Solids. 2003. 316. № 1. P. 96–103. https://doi.org/10.1016/S0022–3093(02)01941–5.
  136. Cheng J., Liang X., Xu B., Wu Y. // J Non Cryst Solids. 2009. 355. № 34–36. P. 1673–1678. https://doi.org/10.1016/j.jnoncrysol.2009.06.024
  137. Meijun L., Xu L., Zhu C., et al. // J. Mater. Res. and Technology. 2024. 28. P. 752–773. https://doi.org/10.1016/j.jmrt.2023.12.011.
  138. Kumar D. Recent advances in tribology of high entropy alloys: A critical review // Prog. Mater. Sci. 2023. 136. P. 101106.
  139. Wang Y., Jin J., Zhang M., et al. // J. Alloys Compd. 2021. 858. P. 157712. https://doi.org/10.1016/j.jallcom.2020.157712
  140. Mao X., Wang Y., Jiang J., et al. // Mater. Lett. 2022. 314. P. 131855. https://doi.org/10.1016/j.matlet.2022.131855
  141. Li Y., Luo H., Li W., Xu C., Min N. // Mater. Des. 2023. 231. P. 112049. https://doi.org/10.1016/j.matdes.2023.112049
  142. Ye Y., Liu Z., Liu W., et al. // Tribology International. 2018. 121. P. 410–419. https://doi.org/10.1016/j.triboint.2018.01.064
  143. Tan C., Zhu H., Kuang T., et al. // J. Alloys Compd. 2017. 690. P. 108–115. https://doi.org/10.1016/j.jallcom.2016.08.082
  144. Wang S.L., Zhang Z.Y., Gong Y.B., Nie G.M. // J. Alloys Compd. 2017. 728. P. 1116–1123. https://doi.org/10.1016/j.jallcom.2017.08.251
  145. Qin Y., Wu Y., Zhang J., et al. // T Nonferr Metal Soc. 2015. 25. № 4. P. 1144–1150. https://doi.org/10.1016/S1003–6326(15)63709–8
  146. Cheng, J.B., Wang, Z.H. Xu B.S. // J Therm Spray Tech. 2012. 21. P. 1025–1031. https://doi.org/10.1007/s11666–012–9779–5
  147. Xiao L., Zheng Z., Huang P., Wang F. // Scr. Mater. 2022. 210. P. 114454. https://doi.org/10.1016/j.scriptamat.2021.114454
  148. Pastukhov E.A., Sidorov N.I., Polukhin V.A., Chentsov V.P. Short order and hydrogen transport in amorphous palladium materials // Defect and Diffusion Forum. 2009. 283–286. P. 149–154.
  149. Belyakova R.M., Kurbanova E.D., Sidorov N.I., Polukhin V.A. // Russ. Metall. 2022. № 8. P. 851–860. https://doi.org/10.1134/S0036029522080031
  150. Belyakova R.M., Polukhin V.A., Sidorov N.I. // Russ. Metall. 2019. № 2. P. 108–115. https://doi.org/10.1134/S0036029519020058.
  151. Sahlberg M., Karlsson D., Zlotea C., et al. Superior hydrogen storage in high entropy alloys // Sci Rep. 2016. 6. P. 36770.
  152. Montero J., Zlotea, C., Ek G., et al. // Molecules. 2019. 24. P. 2799. https://doi.org/10.3390/molecules24152799
  153. Montero J., Ek G., Laversenne L., et al. // Molecules. 2021. 26. P. 2470. https://doi.org/10.3390/molecules26092470
  154. Montero J., Ek G., Laversenne L., et al. // J. Alloys Compd. 2020. 835. P. 155376. https://doi.org/10.1016/j.jallcom.2020.155376
  155. Sidorov N.I., Estemirova S.K., Kurbanova E.D., Polukhin V.A. // Russ. Metall. 2022. № 8. P. 887–897. https://doi.org/10.1134/S0036029522080158
  156. Shen H., Zhang J., Hu J., et al. A Novel TiZrHfMoNb High-Entropy Alloy for Solar Thermal Energy Storage // Nanomaterials (Basel). 2019. 9. № 2. P. 248.
  157. Silva B.H., Zlotea C., Champion Y., Botta W.J., Zepon G. // J. Alloys Compd. 2021. 865. P. 158767. https://doi.org/10.1016/j.jallcom.2021.158767
  158. Karlsson D., Ek G., Cedervall J., Zlotea C., et al. // Inorg. Chem. 2018. 57. № 4. P. 2103–2110. https://doi.org/10.1021/acs.inorgchem.7b03004
  159. Kao Y-F., Chen S-K., Sheu J-H., Lin J-T, et al. Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys // Int. J. Hydrog. Energy. 2010. 35. № 17. P. 9046–9059.
  160. Floriano R., Zepon G., Edalati K., et al. Hydrogen storage in TiZrNbFeNi high entropy alloys, designed by thermodynamic calculations // Int. J. Hydrog. Energy. 2020. 45. № 58. P. 33759–33770.
  161. Zadorozhnyy V., Sarac B., Berdonosova E., et al. Evaluation of hydrogen storage performance of ZrTiVNiCrFe in electrochemical and gas-solid reactions // Int. J. Hydrog. Energy. 2020. 45. № 8. P. 5347–5355.
  162. Sarac B., Zadorozhnyy V., Berdonosova E., et al. Hydrogen storage performance of the multiprincipal-component CoFeMnTiVZr alloy in electrochemical and gas–solid reactions // RSC Adv. 2020. 10. P. 24613.
  163. Kunce I., Polanski M., Bystrzycki J. Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using Laser Engineered Net Shaping (LENS) // Int. J. Hydrog. Energy. 2013. 38. № 27. P. 12180–12189.
  164. Edalati P., Floriano R., Mohammadi A., et al. // Scr. Mater. 2020. 178. P. 387–390. https://doi.org/10.1016/j.scriptamat.2019.12.009
  165. Mohammadi A., Ikeda Y., Edalati P., et al. // Acta Mater. 2022. 236. P. 118117. https://doi.org/10.1016/j.actamat.2022.118117
  166. Luo L., Chen L., Li L., et al. // Int. J. Hydrog. Energy. 2024. 50. Part D.P. 406–430. https://doi.org/10.1016/j.ijhydene.2023.07.146
  167. Zhao Y., Park J.-M., Murakami K., Komazaki S., et al. // Scr. Mater. 2021. 203. P. 114069. https://doi.org/10.1016/j.scriptamat.2021.114069.
  168. Luo L., Li Y., Yuan Z., et al. // J. Alloys Compd. 2022. 913. P. 165273. https://doi.org/10.1016/j.jallcom.2022.165273.
  169. Verma S.K., Mishra S.S., Mukhopadhyay N.K., Yadav T.P. Superior catalytic action of high-entropy alloy on hydrogen sorption properties of MgH2 // Int. J. Hydrog. Energy. 2024. 50. Part D.P. 749–762.
  170. Polukhin V.A., Sidorov N.I., Kurbanova E.D., Belyakova R.M. Characteristics of amorphous, nanocrystalline, and crystalline membrane alloys // Russ. Metall. 2022. № 8. P. 869–880.
  171. Polukhin V.A., Sidorov N.I., Kurbanova E.D., Belyakova R.M. Characteristics of amorphous, nanocrystalline, and crystalline membrane alloys // Russ. Metall. 2022. 2022. № 8. P. 869–880.
  172. Polukhin V.A., Gafner Yu. Ya., Chepkasov I.V., Kurbanova E.D. // Russ. Metall. 2014. № 2. P. 112–125. https://doi.org/10.1134/S0036029514020128
  173. Polukhin V.A., Sidorov N.I., Kurbanova E.D., Belyakova R.M. // Russ. Metall. 2022. № 8. P. 797–817. https://doi.org/10.1134/S0036029522080110
  174. Polukhin V.A., Kurbanova E.D., Belyakova R.M. // Met. Sci. Heat Treat. 2021. 63. № 1–2. P. 3–10.https://doi.org/10.1007/s11041–021–00639-z
  175. Sun Y., Dai S. High-entropy materials for catalysis: A new frontier // Sci. Adv. 2021. 7. P. eabg1600.
  176. Xu H., Jin Z., Zhang Y., Lin X., Xie G., Liub X., Qiu H.-J. Designing strategies and enhancing mechanism for multicomponent high-entropy catalysts // Chem. Sci. 2023. 14. P. 771.
  177. Xie P., Yao Y., Huang Z. et al. // Nat Commun. 2019. 10. Р. 4011. https://doi.org/10.1038/s41467–019–11848–9.
  178. Yao Y., Huang Z., Li T., et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters // PNAS. 2020. 117. № 12. P. 6316–6322.
  179. Garzón Manjón A., Löffler T., Meischein M., et al. // Nanoscale. 2020. 12. P. 23570. https://doi.org/10.1039/d0nr07632e.
  180. Edalati P., Itagoe Y., Ishihara H., et al. Visible-light photocatalytic oxygen production on a high-entropy oxide by multiple-heterojunction introduction // J. Photochem. Photobiol. A: Chemistry. 2022. 433. P. 114167.
  181. Chen X., Si C., Gao Y., et al. // J. Power Sources. 2015. 273. P. 324–332. https://doi.org/10.1016/j.jpowsour.2014.09.076
  182. Qiu H.-J., Fang G., Gao J. // ACS Mater. Lett. 2019. 1. № 5. P. 526–533. https://doi.org/10.1021/acsmaterialslett.9b00414
  183. Shaikh J.S., Rittiruam M., Saelee T., et al. // J. Alloys Compd. 2023. 969. P. 172232. https://doi.org/10.1016/j.jallcom.2023.172232
  184. Rittiruam M., Khamloet P., Ektarawong A., et al. // Appl. Surf. Sci. 2024. 652. P. 159297. https://doi.org/10.1016/j.apsusc.2024.159297
  185. Pedersen J.K., Batchelor T.A.A., Bagger A., Rossmeisl J. High-entropy alloys as catalysts for the CO2 and CO reduction reactions // ACS Catalysis. 2020. 10. № 3. P. 2169–2176.
  186. Nellaiappan S., Katiyar N.K., Kumar R., et al. High-Entropy Alloys as Catalysts for the CO2 and CO Reduction Reactions: Experimental Realization // ACS Catalysis. 2020. 10 № 6. P. 3658–3663.
  187. Akrami S., Edalati P., Shundo Y., et al. // Chem. Eng. J. 2022. 449. P. 137800. https://doi.org/10.1016/j.cej.2022.137800

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Принципиальная схема экспериментальной установки ПБДС для синтеза НЧ-ВЭС [59].

Скачать (41KB)
3. Рис. 2. Схема процесса лазерной абляции металлов в жидкости для получения НЧ-ВЭС: 1 – емкость с образцом; 2 – металл; 3 – растворитель; 4 – фиксирующий пинцет; 5 – линза; 6 – лазерный луч [63].

Скачать (29KB)
4. Рис. 3. Схема синтеза гибридных НЧ-ВЭС. Конечный высокопористый НЧ-ВЭС состоит из металлических кластеров и органических мостиковых лигандов на цеолит-имидазолатном каркасе с большим количеством активных метало-органических центров (MIM – 2-метилимидазол) [69].

Скачать (53KB)
5. Рис. 4. (а) Схема одношаровой вибрационной криомельницы, изготовленной по индивидуальному заказу; (б) схема формирования НЧ-ВЭС в криогенной мельнице [71].

Скачать (160KB)
6. Рис. 5. Схема установки для синтеза НЧ-ВЭС методом дугового разряда [73]

Скачать (57KB)
7. Рис. 6. Схема синтеза НЧ-ВЭС методом искрового разряда на постоянном токе [78].

Скачать (69KB)
8. Рис. 7. Изображение микроструктуры НЧ-ВЭС PtCoMoPdRh, имеющей вид «эластичного наноцветка», полученное с помощью высокоугловой кольцевой сканирующей просвечивающей электронной микроскопии в темном поле (high-angleannular dark-field scanning transmission electron microscope, HAADF-STEM) [85]

Скачать (29KB)
9. Рис. 8. Схема синтеза нанокатализаторов на основе ВЭС с помощью «мокрой» химии с применением УЗ и спиртовой ионной жидкости [86].

Скачать (48KB)
10. Рис. 9. Схема изготовления нанотрубок ВЭС PdNiCoCuFe методом темплатногоэлектроосаждения [89].

Скачать (73KB)
11. Рис. 10. Схема темплатного синтеза «субнанокластеров» ВЭС с использованием дендримера [91].

Скачать (130KB)
12. Рис. 11. Схема синтеза структурно упорядоченных НЧ-ВЭС на двумерных мезопористых углеродных нанолистах, богатых азотом (mNC) и рентгеновские дифрактограммы исходного неупорядоченного ВЭС-mNC и упорядоченного ВЭС-mNCcatalysts [93].

Скачать (264KB)
13. Рис. 12. Схема процесса приготовления пористого НЧ-ВЭС CoCrFeNi методом микроволнового нагрева [95].

Скачать (88KB)
14. Рис. 13. Схема синтеза НЧ-ВЭО (Mg, Cu, Ni, Co, Zn)O с помощью микроволнового облучения [98].

Скачать (121KB)
15. Рис. 14. Слева: схема комбинаторного совместного осаждения из двух распыляемых мишеней на подложку с массивом полостей, заполненных ионной жидкостью (ИЖ). Справа: Схема предполагаемого процесса формирования НЧ в ИЖ [102].

Скачать (47KB)
16. Рис. 15. Схема изготовления нанопористых ВЭС с использованием деаллоинга [117].

Скачать (112KB)
17. Рис. 16. Сетевое описание, визуализирующее родство твердых растворов между элементами в ВЭС, с использованием алгоритмов Gephi и ForceAtlas2: (a) ВЭС23, (б) ВЭС14 и (в) ВЭС15 [117].

Скачать (110KB)
18. Рис. 17. (a) – последовательность элементарных стадий синтеза НЧ-ВЭС CoNiCuRuPd на подложке TiO2 (101) методом спилловера водорода, полученная из расчетов ТФП, (б) – экспериментальные рентгеновские дифрактограммы НЧ-ВЭС (верхняя), осажденного на подложке TiO2 (нижняя) [122].

Скачать (103KB)
19. Рис. 18. Схема синтеза НЧ-ВЭС методом карботермического удара: подготовка образца и временная эволюция температуры во время теплового удара длительностью 55 мс [123].

Скачать (118KB)

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах