Controlled synthesis of nanoparticles of high-etropy materials. Optimization of traditional and creation of innovation strategies

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In the last decade, the diversity of high-entropy materials (HEMs) has increased sharply, including due to the expansion of research into the field of amorphous, nano- and heterostructures. Interest in nanoscale HEMs is primarily associated with their potential application in various fields, such as renewable and green energy, catalysis, hydrogen storage, surface protection and others. The development of nanotechnology has made it possible to develop an innovative design of nanoscale HEMs with fundamentally new structures with unique physical and chemical properties. Problems of controlled synthesis with precisely specified parameters of chemical composition, microstructure and morphology are solved. At the same time, traditional technologies such as fast pyrolysis, mechanical alloying, magnetron sputtering, electrochemical synthesis, etc. are being modernized. Along with this, innovative synthesis technologies have appeared, such as carbothermic shock, the method of controlled hydrogen spillover. The review discusses various methods for the synthesis of nanoscale HEMs that have been developed in the last few 6–7 years for various applications. Some of them are modernization of traditional methods for producing HEM or nano-sized materials, while another group of techniques represents innovative solutions stimulated and inspired by the HEM phenomenon.

Texto integral

Acesso é fechado

Sobre autores

V. Polukhin

Institute of Metallurgy of the Ural Branch of the RAS

Autor responsável pela correspondência
Email: p.valery47@yandex.ru
Rússia, Yekaterinburg

S. Estemirova

Institute of Metallurgy of the Ural Branch of the RAS

Email: esveta100@mail.ru
Rússia, Yekaterinburg

Bibliografia

  1. Fu M., Ma X., Zhao K., Li X., Su D. // iScience. 2021. 24. № 3. P. 102177. https://doi.org/10.1016/j.isci.2021.102177
  2. Gelchinski B.R., Balyakin I.A., Yuryev A.A., Rempel A.A. High-entropy alloys: properties and prospects of application as protective coatings // Russ. Chem. Rev. 2022. 91. № 6). P. RCR5023.
  3. Li F.C., Liu T., Zhang J.Y., et al. // Mater. Today Adv. 2019. 4. P. 100027. https://doi.org/10.1016/j.mtadv.2019.100027
  4. Pavithra C.L.P., Dey S.R. // Nano Select. 2023. 4. P. 48–78. https://doi.org/10.1002/nano.202200081
  5. Yeh J.-W., Chen S.-K., Lin S.-J., et al. // Adv. Eng. Mater. 2004. 6. P. 299–303. https://doi.org/10.1002/adem.200300567
  6. Miracle D.B. High entropy alloys as a bold step forward in alloy development // Nat Commun. 2019. 10. P. 1805.
  7. Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts // Acta Mater. 2017. 122. P. 448–511.
  8. Braic V., Vladescu A., Balaceanu M., et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings // Surf. Coat. Technol. 2012. 211. P. 117–121.
  9. Lin M–I., Tsai M-H., Shen W-J., Yeh J-W. Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films // Thin Solid Films. 2010. 518. P. 2732–2737.
  10. Gu J., Zou J., Sun S.K. et al. // Sci. China Mater. 2019. 62. P. 1898–1909. https://doi.org/10.1007/s40843–019–9469–4
  11. Chang S-Y., Lin S-Y., Huang Y-C., Wu C.-L. // Surf. Coat. Technol. 2010. 204. P. 3307–3314. https://doi.org/10.1016/j.surfcoat.2010.03.041
  12. Cantor B. Multicomponent high-entropy Cantor alloys // Prog. Mater. Sci. 2021. 120. P. 100754.
  13. Pogrebnjak A.D., Bagdasaryan A.A., Yakushchenko I.V., Beresnev V.M. The structure and properties of high-entropy alloys and nitride coatings based on them // Russ. Chem. Rev. 2014. 83. № 11. P. 1027–1061.
  14. Gao M.C., Miracle D.B., Maurice D., Yan X., Zhang Y., Hawk J.A. High-entropy functional materials // J. Mater. Res. 2018. 33. № 19. P. 3138–3155.
  15. Perrin A., Sorescu M., Burton M.T. et al. // JOM. 2017. 69. 2125–2129. https://doi.org/10.1007/s11837–017–2523–3
  16. Law J.Y., Franco V. // J. Mater. Res. 2023. 38. P. 37–51. https://doi.org/10.1557/s43578–022–00712–0
  17. Fan Z., Wang H., Wu Y., et al. // RSC Adv. 2016. 6. P. 52164–52170. https://doi.org/10.1039/C5RA28088E
  18. Zhao K., Li X., Su D. // Acta Phys. Chim. Sin. 2021. 37. № 7. P. 2009077 (1–24). https://doi.org/10.3866/pku.whxb202009077
  19. Kashkarov E., Krotkevich D., Koptsev M., et al. // Membranes. 2022. 12. P. 1157. https://doi.org/10.3390/membranes12111157
  20. Lei Z., Liu L., Zhao H. et al. // Nat Commun. 2020. 11. P. 299. https://doi.org/10.1038/s41467–019–14170–6
  21. Oses C., Toher C., Curtarolo S. High-entropy ceramics // Nat Rev Mater. 2020. 5. P. 295–309.
  22. Bérardan D., Franger S., Meena A.K., Dragoe N. Room temperature lithium superionic conductivity in high entropy oxides // J. Mater. Chem. A. 2016. 4. P. 9536–9541.
  23. X. Huang, G. Yang, S. Li, et al. // J. Energy Chem. 2022. 68. P. 721–751. https://doi.org/10.1016/j.jechem.2021.12.026
  24. Yao Y.G., Dong Q., Brozena A., et al. High-entropy nanoparticles: synthesis-structure-property relationships and data-driven discovery // Science. 2022. 376. P. eabn3103.
  25. Wan W., Liang K., Zhu P., He P., Zhang S. Recent advances in the synthesis and fabrication methods of high-entropy alloy nanoparticles // J. Mater. Sci. Technol. 2024. 178. P. 226–246.
  26. Yu L., Zeng K., Li C., et al. // Carbon Energy. 2022. 4. № 5. P. 731–761. https://doi.org/10.1002/cey2.228
  27. Zheng H., Luo G., Zhang A., Lu X., He L. // ChemCatChem. 2020. 13. P. 806–817. https://doi.org/10.1002/cctc.202001163
  28. Cahn RW, Haasen P. Physical metallurgy. 4th ed. Cambridge: Univ Press; 1996.
  29. Zhang Y., Zhou Y.J., JLin. P., Chen G.L., Liaw P.K. Solid-Solution Phase Formation Rules for Multi-component Alloys // Adv. Eng. Mater. 2008. 10. № 6. P. 534–538.
  30. Guo S., Liu C.T. // Prog. Nat. Sci. 2011. 21. № 6. P. 433–446. https://doi.org/10.1016/S1002–0071(12)60080-X
  31. Yang X., Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys // Mater. Chem. Phys. 2012. 132. P. 233–238.
  32. Guo S., Ng C., Lu J., Liu C.T. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys // J. Appl. Phys. 2011. 109. P. 103505.
  33. Wang C.W., Wang H.M., Li G.R., et al. // Vacuum. 2020. 181. P. 109738.
  34. https://doi.org/10.1016/j.vacuum.2020.109738
  35. Tsai M-H., Yeh J-W. High-Entropy Alloys: A Critical Review // Materials Research Letters. 2014. 2. № 3. P. 107–123.
  36. Liu W.H., Wu Y., He J.Y., Nieh T.G., Lu Z.P. // Scr. Mater. 2013. 68. P. 526–529. http://dx.doi.org/10.1016/j.scriptamat.2012.12.002
  37. Xiao L., Zheng Z., Huang P., Wang F. Superior anticorrosion performance of crystal-amorphous FeMnCoCrNi high-entropy alloy // Scr. Mater. 2022. 210. P. 114454.
  38. Ranganathan S. Alloyed pleasures: Multimetallic cocktails // Curr Sci. 2003. 85. № 10. P. 1404–1406.
  39. Lei H., Chen C., Ye X. et al. // J. Mater. Res. Technol. 2024. 28. P. 3765–3774. https://doi.org/10.1016/j.jmrt.2024.01.003
  40. B. Gludovatz, A. Hohenwarter, D. Catoor, et al. A fracture-resistant high-entropy alloy for cryogenic applications // Science. 2014. 345. P. 1153.
  41. Fan X.J., Qu R.T., Zhang Z.F. // J. Mater. Sci. Technol. 2022. 123. P. 70–77. https://doi.org/10.1016/j.jmst.2022.01.017
  42. Ju S-P., Lee I-J., Chen H-Y. // J. Alloys Compd. 2021. 858. P. 157681. https://doi.org/10.1016/j.jallcom.2020.157681
  43. Yan J., Yin S., Asta M. et al. // Nat Commun. 2022. 13. P. 2789. https://doi.org/10.1038/s41467–022–30524-z
  44. Song B., Yang Y., Rabbani M., et al. In situ oxidation studies of high-entropy alloy nanoparticles // ACS Nano. 2020. 14. № 11. P. 15131–15143.
  45. Xiang T., Du P., Cai Z., et al. // J. Mater. Sci. Technol. 2022. 117. P. 196–206 https://doi.org/10.1016/j.jmst.2021.12.014
  46. Song H., Lee S., Lee K. // Int J Refract Hard Met 2021. 99. P. 105595. https://doi.org/10.1016/j.ijrmhm.2021.105595
  47. Daryoush S., Mirzadeh H., Ataie A. // Mater. Lett. 2022. 307. P. 131098. https://doi.org/10.1016/j.matlet.2021.131098
  48. Kipkirui N.G., Lin T-T., Kiplangat R.S., et al. HiPIMS and RF magnetron sputtered Al0.5CoCrFeNi2Ti0.5 HEA thin-film coatings: Synthesis and characterization // Surf. Coat. Technol. 2022. 449. P. 128988. https://doi.org/10.1016/j.surfcoat.2022.128988
  49. Zhu Z., Meng H., Ren P. CoNiWReP high entropy alloy coatings prepared by pulse current electrodeposition from aqueous solution // Colloids Surf. A Physicochem. Eng. Asp. 2022. 648. P. 129404.
  50. Sun Y., Dai S., High-entropy materials for catalysis: A new frontier // Sci. Adv. 2021. 7. P. eabg1600.
  51. Takeuchi A., Inoue A., Makino A. // Mater. Sci. Eng. A. 1997. 226–228. P. 636–640. https://doi.org/10.1016/S0921–5093(96)10698–5
  52. Inoue A., Takeuchi A., Makino A., Masumoto T. Hard Magnetic Properties of Nanocrystalline Fe–Nd–B Alloys Containing α-Fe and Intergranular Amorphous Phase // Mater. Trans. 1995. 36. № 5. P. 676–685.
  53. Yoshizawa Y., Oguma S., Yamauchi K. New Febased soft magnetic alloys composed of ultrafine grain structure // J. Appl. Phys. 1988. 64. P. 6044.
  54. Belyakova R.M., Kurbanova E.D., Polukhin V.A. // Physical and chemical aspects of the study of clusters nanostructures and nanomaterials. 2022. 14. P. 512–520. https://doi.org/10.26456/pcascnn/2022.14.512
  55. Kulik T. // J Non Cryst Solids. 2001. 287. № 1. P. 145–161. https://doi.org/10.1016/S0022–3093(01)00627–5
  56. Vatolin N.A., Polukhin V.A., Sidorov N.I. // Russ. Metall. 2021. 2021. P. 905–907. https://doi.org/10.1134/S0036029521080206
  57. Li J., Lu K., Zhao X., et al. // J. Mater. Sci. Technol. 2022. 131. P. 185–194. https://doi.org/10.1016/j.jmst.2022.06.003.
  58. Tripathy B., Malladi S.R.K., Bhattacharjee P.P. // Mater. Sci. Eng. A. 2022. 831. P. 142190. https://doi.org/10.1016/j.msea.2021.142190.
  59. Sun Y.Y., Song M., Liao X.Z., Sha G., He Y.H. Effects of isothermal annealing on the microstructures and mechanical properties of a FeCuSiBAl amorphous alloy // Mater. Sci. Eng. A. 2012. 543. P. 145–151.
  60. Gao S., Hao S., Huang Z. et al. // Nat Commun. 2020. 11. P. 2016. https://doi.org/10.1038/s41467–020–15934–1.
  61. Wong A., Liu Q., Griffin S., et al. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports // Science. 2017. 358. P. 1427–1430.
  62. Ding K., Cullen D.A., Zhang L., et al. // Science. 2018. 362. P. 560–564. https://doi.org/10.1126/science.aau4414
  63. Fojtik A., Giersig M., Henglein A. // Phys. Chem. 1993. 97. № 11. P. 1493–1496. https://doi.org/10.1002/bbpc.19930971112
  64. Neddersen J., Chumanov G., Cotton T.M. Laser Ablation of Metals: A New Method for Preparing SERS Active Colloids // Appl. Spectrosc. 1993. 47. № 12. P. 1959–1964.
  65. Waag F., Li Y., Ziefuß A.R., et al. Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles // RSC Advances. 2019. 9. P. 18547–18558.
  66. Jahangiri H., Morova Y., Asghari A., et al. // Intermetallics. 2023. 156. P. 107834. https://doi.org/10.1016/j.intermet.2023.107834
  67. Rawat R., Singh B.K., Tiwari A., et al. // J. Alloys Compd. 2022. 927. P. 166905. https://doi.org/10.1016/j.jallcom.2022.166905
  68. Salemi F., Abbasi M.H., Karimzadeh F. // J. Alloys Compd. 2016. 685. P. 278e286. http://dx.doi.org/10.1016/j.jallcom.2016.05.274
  69. Shkodich N.F., Kovalev I.D., Kuskov K.V., et al. Fast mechanical synthesis, structure evolution, and thermal stability of nanostructured CoCrFeNiCu high entropy alloy // J. Alloys Compd. 2022. 893. P. 61839.
  70. Xu W., Chen H., Jie K., et al. // Angew. Chem. Int. Ed. 2019. 58. P. 5018–5022. https://doi.org/10.1002/anie.201900787
  71. Butova V.V., Soldatov M.A., Guda A.A., et al. Metal-organic frameworks: structure, properties, methods of synthesis and characterization // Russ. Chem. Rev. 2016. 85. P. 280.
  72. Kumar N., Tiwary C.S. Biswas K. // J Mater Sci. 2018. 53. P. 13411–13423. https://doi.org/10.1007/s10853–018–2485-z
  73. Arora N., Sharma N.N. // Diam Relat Mater. 2014. 50. P. 135–150. http://dx.doi.org/10.1016/j.diamond.2014.10.001
  74. Khan W., Sharma R., Saini P. Carbon nanotube-based polymer composites: Synthesis, properties and applications // In Carbon Nanotubes Current Progress of their Polymer Composites. IntechOpen: London. UK. 2016.
  75. Mao A., Ding P., Quan F., et al. // J. Alloys Compd. 2018. 735. P. 1167–1175. https://doi.org/10.1016/j.jallcom.2017.11.233
  76. Liao Y., Li Y., Ji L., et al. // Acta Mater. 2022. 240. P. 118338. https://doi.org/10.1016/j.actamat.2022.118338
  77. Bai H., Su R., Zhao R.Z., et al. // J. Mater. Sci. Technol. 2024. 177. P. 133–141. https://doi.org/10.1016/j.jmst.2023.07.074
  78. Lunga J-K., Huanga J-C., Tien D-C., et al. Preparation of gold nanoparticles by arc discharge in water // J. Alloys Compd. 2007. 434–435. P. 655–658.
  79. Wu Q., Wang Z., He F. et al. High Entropy Alloys: From Bulk Metallic Materials to Nanoparticles // Metall Mater Trans A. 2018. 49. P. 4986–4990.
  80. Feng J., Chen D., Pikhitsa P.V., et al. // Matter. 2020. 3. № 5. P. 1646–1663. https://doi.org/10.1016/j.matt.2020.07.027
  81. Liu M., Zhang Z., Okejiri F., et al. // Adv. Mater. Interfaces. 2019. 6. P. 1900015. https://doi.org/10.1002/admi.201900015
  82. Singh M.P., Srivastava C. Synthesis and electron microscopy of high entropy alloy nanoparticles // Mater. Lett. 2015. 160. P. 419–422.
  83. Feng G., Ning F., Song J., et al. // J. Am. Chem. Soc. 2021. 143. № 41. P. 17117–17127. https://doi.org/10.1021/jacs.1c07643
  84. Wu D., Kusada K., Yamamoto T., et al. // Chem. Sci. 2020. 11. P. 12731. https://doi.org/10.1039/D0SC02351E
  85. Jin Y., Li R., Zhang X., et al. Ultrafine high-entropy alloy nanoparticles for extremely superior electrocatalytic methanol oxidation // Mater. Lett. 2023. 344. P. 134421.
  86. Wei M., Sun Y., Ai F., et al. // Appl. Catal. B. 2023. 334. P. 122814. https://doi.org/10.1016/j.apcatb.2023.122814
  87. Okejiri F., Yang Z., Chen H. et al. // Nano Res. 2022. 15. P. 4792–4798. https://doi.org/10.1007/s12274–021–3760-x
  88. Okejiri F., Fan J., Huang Z., et al. // iScience. 2022. 25. № 5. P. 104214. https://doi.org/10.1016/j.isci.2022.104214
  89. Rekha M.Y., Mallik N., Srivastava C. First Report on High Entropy Alloy Nanoparticle Decorated Graphene // Sci Rep. 2018. 8. P. 8737.
  90. Wang A-L., Wan H-C., Xu H., et al. // Electrochim. Acta. 2014. 127. P. 448–453. https://doi.org/10.1016/j.electacta.2014.02.076
  91. Huang K., Zhang B., Wu J., et al. // J. Mater. Chem. A. 2020. 8. P. 11938–11947. https://doi.org/10.1039/D0TA02125C
  92. Tsukamoto T., Kambe T., Nakao A. et al. // Nat Commun. 2018. 9. P. 3873. https://doi.org/10.1038/s41467–018–06422–8
  93. Li H., Zhu H., Shen Q., et al. // Chem. Commun. 2021. 57. P. 2637. https://doi.org/10.1039/D0CC07345H
  94. Zhu G., Jiang Y., Yang H., et al. // Adv. Mater. 2022. 34. P. 2110128. https://doi.org/10.1002/adma.202110128
  95. Tang J., Xu J.L., Ye Z.G., Li X.B., Luo J.M. // J. Mater. Sci. Technol. 2021. 79. P. 171–177. https://doi.org/10.1016/j.jmst.2020.10.079
  96. Tang J., Xu J.L., Ye Z.G., et al. // J. Alloys Compd. 2021. 885. P. 160995. https://doi.org/10.1016/j.jallcom.2021.160995
  97. H. Qiao, M.T. Saray, X. Wang, et al. Scalable Synthesis of High Entropy Alloy Nanoparticles by Microwave Heating // ACS Nano 2021. 15. 9. P. 14928–14937.
  98. Nair R.B., Arora H.S., Boyana A.V., Saiteja P., Grewal H.S., Tribological behavior of microwave synthesized high entropy alloy claddings // Wear. 2019. 436–437. P. 203028.
  99. M. Kheradmandfard, H. Minouei, N. Tsvetkov, et al. // Mater. Chem. Phys. 2021. 262. P. 124265. https://doi.org/10.1016/j.matchemphys.2021.124265
  100. Ren L., Liu J., Liu X., et al. Rapid synthesis of high-entropy antimonides under air atmosphere using microwave method to ultra-high energy density supercapacitors // J. Alloys Compd. 2023. 967. P. 171816. https://doi.org/10.1016/j.jallcom.2023.171816
  101. Wang H.M., Su W.X., Liu J.Q., et al. // J. Mater. Res. and Technology, 2023. 24. P. 8618–8634. https://doi.org/10.1016/j.jmrt.2023.05.100
  102. Gao L., Li G., Wang H., Yan Y. // Materials Characterization. 2022. 189. P. 111993. https://doi.org/10.1016/j.matchar.2022.111993
  103. König D., Richter K., Siegel A., Mudring A.-V. Ludwig A. // Adv. Funct. Mater. 2014. 24. P. 2049–2056. https://doi.org/10.1002/adfm.201303140
  104. Shi Y., Yang B., Rack P.D., et al. // Mater. Des. 2020. 195. P. 109018. https://doi.org/10.1016/j.matdes.2020.109018
  105. Schwarz H., Uhlig T., Lindner T., et al. // Coatings. 2022. 12. P. 269. https://doi.org/10.3390/coatings12020269
  106. Cheng C., Zhang X., Haché M.J.R. et al. // Nano Res. 2022. 15. P. 4873–4879. https://doi.org/10.1007/s12274–021–3805–1
  107. Löffler T., Meyer H., Savan A., et al. Discovery of a multinary noble metal–free oxygen reduction catalyst // Adv. Energy Mater. 2018. 8. № 34. P. 1802269.
  108. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys // Mater. Sci. Eng. A. 2004. 375–377. P. 213–218.
  109. Garzón-Manjón A., Meyer H., Grochla D., et al. // Nanomaterials. 2018. 8. P. 903. https://doi.org/10.3390/nano8110903
  110. Sang Q., Hao S., Han J., Ding Y. Dealloyednanoporous materials for electrochemical energy conversion and storage // EnergyChem. 2022. 4. № 1. P. 100069.
  111. Asao N. Nanocatalysts fabricated by a dealloying method // The Chemical Record. 2015. 15. P. 964–978.
  112. Hakamada M., Mabuchi M. Fabrication, Microstructure, and Properties of Nanoporous Pd, Ni, and Their Alloys by Dealloying // Crit. Rev. Solid State Mater. Sci. 2013. 38. № 4. P. 262–285.
  113. Liu H., Qin H., Kang J., et al. // Chem. Eng. J. 2022. 435. № 1. P. 134898. https://doi.org/10.1016/j.cej.2022.134898
  114. Qiu H-J., Fang G., Wen Y., et al. // J. Mater. Chem. A. 2019. 7. P. 6499–6506. https://doi.org/10.1039/C9TA00505F
  115. Jin Z., Lv J., Jia H.L., et al. // Small. 2019. 15. P. 1904180. https://doi.org/10.1002/smll.201904180
  116. Li S., Tang X., Jia H., et al. // Journal of Catalysis. 2020. 383. P. 164–171. https://doi.org/10.1016/j.jcat.2020.01.024
  117. Fang G., Gao J., Lv J., et al. // Appl. Catal. B. 2020. 268. P. 118431. https://doi.org/10.1016/j.apcatb.2019.118431
  118. Yoshizaki T., Fujita T. // J. Alloys Compd. 2023. 968. P. 172056. https://doi.org/10.1016/j.jallcom.2023.172056
  119. Abid T., Akram M.A., Yaqub T.B., et al. // J. Alloys Compd. 2024. 970. P. 172633. https://doi.org/10.1016/j.jallcom.2023.172633
  120. Zeng L., You C., Cai X., et al. // J. Mater. Res. and Technology. 2020. 9. № 3. P. 6909–6915. https://doi.org/10.1016/j.jmrt.2020.01.018
  121. Joo S-H., Okulov I.V., Kato H. // J. Mater. Res. and Technology. 2021. 14. P. 2945–2953. https://doi.org/10.1016/j.jmrt.2021.08.100
  122. Okulov A.V., Joo S.-H., Kim, H.S. et al. Nanoporous high-entropy alloy by liquid metal dealloying // Metals. 2020. 10. P. 1396.
  123. Mori K., Hashimoto N., Kamiuchi N. et al. // Nat Commun. 2021. 12. P. 3884. https://doi.org/10.1038/s41467–021–24228-z
  124. Y. Yao, Z. Huang, P. Xie, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles // Science. 2018. 359. P. 1489–1494.
  125. Cui M., Yang C., Hwang S., et al. Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition // Sci. Adv. 2022. 8. № 4. https://doi.org/10.1126/sciadv.abm4322
  126. Abdelhafiz A., Wang B., Harutyunyan A.R., Li J. // Adv. Energy Mater. 2022. 12. P. 2200742. https://doi.org/10.1002/aenm.202200742
  127. El-Atwani O., Li N., Li M., et al. // Sci. Adv. 2019. 5. № 3. https://doi.org/10.1126/sciadv.aav2002
  128. Su Z., Ding J., Song M., et al. // Acta Mater. 2023. 245. P. 118662. https://doi.org/10.1016/j.actamat.2022.118662.
  129. Cheng Z., Sun J., Gao X., et al. // J. Alloys Compd. 023. 930. № 2. P. 166768. https://doi.org/10.1016/j.jallcom.2022.166768.
  130. Wu H., Zhang S., Wang Z.Y., et al. // International Int J Refract Hard Met 2022. 102. P. 105721. https://doi.org/10.1016/j.ijrmhm.2021.105721.
  131. Wen X., Cui X., Jin G., et al. // Intermetallics. 2023. 156. P. 107851. https://doi.org/10.1016/j.intermet.2023.107851.
  132. He R., Wu M., Jie D., et al. // Surf. Coat. Technol. 2023. 473. P. 130026. https://doi.org/10.1016/j.surfcoat.2023.130026.
  133. Lindner T., Löbel M., Sattler B., Lampke T. // Surf. Coat. Technol. 2019. 371. P. 389–394. https://doi.org/10.1016/j.surfcoat.2018.10.017.
  134. Yang R., Guo X., Yang H., Qiao J. // Surf. Coat. Technol. 2023. 464. P. 129572. https://doi.org/10.1016/j.surfcoat.2023.129572.
  135. Gloriant T. // J. Non Cryst Solids. 2003. 316. № 1. P. 96–103. https://doi.org/10.1016/S0022–3093(02)01941–5.
  136. Cheng J., Liang X., Xu B., Wu Y. // J Non Cryst Solids. 2009. 355. № 34–36. P. 1673–1678. https://doi.org/10.1016/j.jnoncrysol.2009.06.024
  137. Meijun L., Xu L., Zhu C., et al. // J. Mater. Res. and Technology. 2024. 28. P. 752–773. https://doi.org/10.1016/j.jmrt.2023.12.011.
  138. Kumar D. Recent advances in tribology of high entropy alloys: A critical review // Prog. Mater. Sci. 2023. 136. P. 101106.
  139. Wang Y., Jin J., Zhang M., et al. // J. Alloys Compd. 2021. 858. P. 157712. https://doi.org/10.1016/j.jallcom.2020.157712
  140. Mao X., Wang Y., Jiang J., et al. // Mater. Lett. 2022. 314. P. 131855. https://doi.org/10.1016/j.matlet.2022.131855
  141. Li Y., Luo H., Li W., Xu C., Min N. // Mater. Des. 2023. 231. P. 112049. https://doi.org/10.1016/j.matdes.2023.112049
  142. Ye Y., Liu Z., Liu W., et al. // Tribology International. 2018. 121. P. 410–419. https://doi.org/10.1016/j.triboint.2018.01.064
  143. Tan C., Zhu H., Kuang T., et al. // J. Alloys Compd. 2017. 690. P. 108–115. https://doi.org/10.1016/j.jallcom.2016.08.082
  144. Wang S.L., Zhang Z.Y., Gong Y.B., Nie G.M. // J. Alloys Compd. 2017. 728. P. 1116–1123. https://doi.org/10.1016/j.jallcom.2017.08.251
  145. Qin Y., Wu Y., Zhang J., et al. // T Nonferr Metal Soc. 2015. 25. № 4. P. 1144–1150. https://doi.org/10.1016/S1003–6326(15)63709–8
  146. Cheng, J.B., Wang, Z.H. Xu B.S. // J Therm Spray Tech. 2012. 21. P. 1025–1031. https://doi.org/10.1007/s11666–012–9779–5
  147. Xiao L., Zheng Z., Huang P., Wang F. // Scr. Mater. 2022. 210. P. 114454. https://doi.org/10.1016/j.scriptamat.2021.114454
  148. Pastukhov E.A., Sidorov N.I., Polukhin V.A., Chentsov V.P. Short order and hydrogen transport in amorphous palladium materials // Defect and Diffusion Forum. 2009. 283–286. P. 149–154.
  149. Belyakova R.M., Kurbanova E.D., Sidorov N.I., Polukhin V.A. // Russ. Metall. 2022. № 8. P. 851–860. https://doi.org/10.1134/S0036029522080031
  150. Belyakova R.M., Polukhin V.A., Sidorov N.I. // Russ. Metall. 2019. № 2. P. 108–115. https://doi.org/10.1134/S0036029519020058.
  151. Sahlberg M., Karlsson D., Zlotea C., et al. Superior hydrogen storage in high entropy alloys // Sci Rep. 2016. 6. P. 36770.
  152. Montero J., Zlotea, C., Ek G., et al. // Molecules. 2019. 24. P. 2799. https://doi.org/10.3390/molecules24152799
  153. Montero J., Ek G., Laversenne L., et al. // Molecules. 2021. 26. P. 2470. https://doi.org/10.3390/molecules26092470
  154. Montero J., Ek G., Laversenne L., et al. // J. Alloys Compd. 2020. 835. P. 155376. https://doi.org/10.1016/j.jallcom.2020.155376
  155. Sidorov N.I., Estemirova S.K., Kurbanova E.D., Polukhin V.A. // Russ. Metall. 2022. № 8. P. 887–897. https://doi.org/10.1134/S0036029522080158
  156. Shen H., Zhang J., Hu J., et al. A Novel TiZrHfMoNb High-Entropy Alloy for Solar Thermal Energy Storage // Nanomaterials (Basel). 2019. 9. № 2. P. 248.
  157. Silva B.H., Zlotea C., Champion Y., Botta W.J., Zepon G. // J. Alloys Compd. 2021. 865. P. 158767. https://doi.org/10.1016/j.jallcom.2021.158767
  158. Karlsson D., Ek G., Cedervall J., Zlotea C., et al. // Inorg. Chem. 2018. 57. № 4. P. 2103–2110. https://doi.org/10.1021/acs.inorgchem.7b03004
  159. Kao Y-F., Chen S-K., Sheu J-H., Lin J-T, et al. Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys // Int. J. Hydrog. Energy. 2010. 35. № 17. P. 9046–9059.
  160. Floriano R., Zepon G., Edalati K., et al. Hydrogen storage in TiZrNbFeNi high entropy alloys, designed by thermodynamic calculations // Int. J. Hydrog. Energy. 2020. 45. № 58. P. 33759–33770.
  161. Zadorozhnyy V., Sarac B., Berdonosova E., et al. Evaluation of hydrogen storage performance of ZrTiVNiCrFe in electrochemical and gas-solid reactions // Int. J. Hydrog. Energy. 2020. 45. № 8. P. 5347–5355.
  162. Sarac B., Zadorozhnyy V., Berdonosova E., et al. Hydrogen storage performance of the multiprincipal-component CoFeMnTiVZr alloy in electrochemical and gas–solid reactions // RSC Adv. 2020. 10. P. 24613.
  163. Kunce I., Polanski M., Bystrzycki J. Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using Laser Engineered Net Shaping (LENS) // Int. J. Hydrog. Energy. 2013. 38. № 27. P. 12180–12189.
  164. Edalati P., Floriano R., Mohammadi A., et al. // Scr. Mater. 2020. 178. P. 387–390. https://doi.org/10.1016/j.scriptamat.2019.12.009
  165. Mohammadi A., Ikeda Y., Edalati P., et al. // Acta Mater. 2022. 236. P. 118117. https://doi.org/10.1016/j.actamat.2022.118117
  166. Luo L., Chen L., Li L., et al. // Int. J. Hydrog. Energy. 2024. 50. Part D.P. 406–430. https://doi.org/10.1016/j.ijhydene.2023.07.146
  167. Zhao Y., Park J.-M., Murakami K., Komazaki S., et al. // Scr. Mater. 2021. 203. P. 114069. https://doi.org/10.1016/j.scriptamat.2021.114069.
  168. Luo L., Li Y., Yuan Z., et al. // J. Alloys Compd. 2022. 913. P. 165273. https://doi.org/10.1016/j.jallcom.2022.165273.
  169. Verma S.K., Mishra S.S., Mukhopadhyay N.K., Yadav T.P. Superior catalytic action of high-entropy alloy on hydrogen sorption properties of MgH2 // Int. J. Hydrog. Energy. 2024. 50. Part D.P. 749–762.
  170. Polukhin V.A., Sidorov N.I., Kurbanova E.D., Belyakova R.M. Characteristics of amorphous, nanocrystalline, and crystalline membrane alloys // Russ. Metall. 2022. № 8. P. 869–880.
  171. Polukhin V.A., Sidorov N.I., Kurbanova E.D., Belyakova R.M. Characteristics of amorphous, nanocrystalline, and crystalline membrane alloys // Russ. Metall. 2022. 2022. № 8. P. 869–880.
  172. Polukhin V.A., Gafner Yu. Ya., Chepkasov I.V., Kurbanova E.D. // Russ. Metall. 2014. № 2. P. 112–125. https://doi.org/10.1134/S0036029514020128
  173. Polukhin V.A., Sidorov N.I., Kurbanova E.D., Belyakova R.M. // Russ. Metall. 2022. № 8. P. 797–817. https://doi.org/10.1134/S0036029522080110
  174. Polukhin V.A., Kurbanova E.D., Belyakova R.M. // Met. Sci. Heat Treat. 2021. 63. № 1–2. P. 3–10.https://doi.org/10.1007/s11041–021–00639-z
  175. Sun Y., Dai S. High-entropy materials for catalysis: A new frontier // Sci. Adv. 2021. 7. P. eabg1600.
  176. Xu H., Jin Z., Zhang Y., Lin X., Xie G., Liub X., Qiu H.-J. Designing strategies and enhancing mechanism for multicomponent high-entropy catalysts // Chem. Sci. 2023. 14. P. 771.
  177. Xie P., Yao Y., Huang Z. et al. // Nat Commun. 2019. 10. Р. 4011. https://doi.org/10.1038/s41467–019–11848–9.
  178. Yao Y., Huang Z., Li T., et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters // PNAS. 2020. 117. № 12. P. 6316–6322.
  179. Garzón Manjón A., Löffler T., Meischein M., et al. // Nanoscale. 2020. 12. P. 23570. https://doi.org/10.1039/d0nr07632e.
  180. Edalati P., Itagoe Y., Ishihara H., et al. Visible-light photocatalytic oxygen production on a high-entropy oxide by multiple-heterojunction introduction // J. Photochem. Photobiol. A: Chemistry. 2022. 433. P. 114167.
  181. Chen X., Si C., Gao Y., et al. // J. Power Sources. 2015. 273. P. 324–332. https://doi.org/10.1016/j.jpowsour.2014.09.076
  182. Qiu H.-J., Fang G., Gao J. // ACS Mater. Lett. 2019. 1. № 5. P. 526–533. https://doi.org/10.1021/acsmaterialslett.9b00414
  183. Shaikh J.S., Rittiruam M., Saelee T., et al. // J. Alloys Compd. 2023. 969. P. 172232. https://doi.org/10.1016/j.jallcom.2023.172232
  184. Rittiruam M., Khamloet P., Ektarawong A., et al. // Appl. Surf. Sci. 2024. 652. P. 159297. https://doi.org/10.1016/j.apsusc.2024.159297
  185. Pedersen J.K., Batchelor T.A.A., Bagger A., Rossmeisl J. High-entropy alloys as catalysts for the CO2 and CO reduction reactions // ACS Catalysis. 2020. 10. № 3. P. 2169–2176.
  186. Nellaiappan S., Katiyar N.K., Kumar R., et al. High-Entropy Alloys as Catalysts for the CO2 and CO Reduction Reactions: Experimental Realization // ACS Catalysis. 2020. 10 № 6. P. 3658–3663
  187. Akrami S., Edalati P., Shundo Y., et al. // Chem. Eng. J. 2022. 449. P. 137800. https://doi.org/10.1016/j.cej.2022.137800

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic diagram of an experimental PBDS installation for the synthesis of LF-WEIGHT [59].

Baixar (41KB)
3. Fig. 2. Diagram of the process of laser ablation of metals in a liquid to produce LF-WPP: 1 – container with a sample; 2 – metal; 3 – solvent; 4 – fixing tweezers; 5 – lens; 6 – laser beam [63].

Baixar (29KB)
4. Fig. 3. Scheme of synthesis of hybrid LF-WPP. The final highly porous LF-WPP consists of metal clusters and organic bridging ligands on a zeolite-imidazolate framework with a large number of active metal-organic centers (MIM – 2-methylimidazole) [69].

Baixar (53KB)
5. Fig. 4. (a) A diagram of a single ball vibrating cryomill made to order; (b) a diagram of the formation of a low-frequency wind turbine in a cryogenic mill [71].

Baixar (160KB)
6. Fig. 5. Scheme of the installation for the synthesis of low-frequency wind turbines by the arc discharge method [73]

Baixar (57KB)
7. Fig. 6. The scheme of the synthesis of LF-WPP by the direct current spark discharge method [78].

Baixar (69KB)
8. Fig. 7. Image of the microstructure of the low-frequency PtCoMoPdRh WPP having the form of an "elastic nanoflower" obtained using high-angle annular scanning transmission electron microscopy in a dark field (high-angleannular dark-field scanning transmission electron microscope, HAADF-STEM) [85]

Baixar (29KB)
9. Fig. 8. Scheme of synthesis of nanocatalysts based on WPP using "wet" chemistry using ultrasonic and alcohol ionic liquid [86].

Baixar (48KB)
10. Pain. 9. A scheme for manufacturing PdNiCoCuFe nanotubes by template electrodeposition [89].

Baixar (73KB)
11. Fig. 10. Scheme of template synthesis of WPP "subnanoclusters" using a dendrimer [91].

Baixar (130KB)
12. Fig. 11. The synthesis scheme of structurally ordered LPS in two-dimensional mesoporous carbon nanoliths rich in nitrogen (mNC) and X-ray diffractograms of the initial disordered WES-mNC and ordered WES-mNCcatalysts [93].

Baixar (264KB)
13. Fig. 12. Diagram of the process of preparation of porous LF-WPP CoCrFeNi by microwave heating [95].

Baixar (88KB)
14. Fig. 13. Scheme of synthesis of low-frequency VEO (Mg, Cu, Ni, Co, Zn)O using microwave irradiation [98].

Baixar (121KB)
15. Fig. 14. On the left: a scheme of combinatorial joint deposition from two sprayed targets onto a substrate with an array of cavities filled with ionic liquid (IJ). On the right: The scheme of the proposed LF formation process in the IJ [102].

Baixar (47KB)
16. Fig. 15. The scheme of manufacturing nanoporous wind turbines using dealloying [117].

Baixar (112KB)
17. Fig. 16. A network description visualizing the relationship of solid solutions between elements in WPP using the Gephi and ForceAtlas2 algorithms: (a) VES 23, (b) VES 14 and (c) VES 15 [117].

Baixar (110KB)
18. Fig. 17. (a) the sequence of elementary stages of synthesis of CoNiCuRuPd LF-WPP on a TiO2 substrate (101) by the hydrogen spillover method obtained from TFP calculations, (b) experimental X–ray diffractograms of LF-WPP (upper) deposited on a TiO2 substrate (lower) [122].

Baixar (103KB)
19. Fig. 18. Scheme of synthesis of LF-WPP by carbothermic shock: sample preparation and temporal evolution of temperature during a heat stroke lasting 55 ms [123].

Baixar (118KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies