Высокотемпературное пассивирование поверхности кандидатных материалов для ЖСР посредством добавления О2– в солевую фазу галогенидного расплава

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Были проведены эксперименты по определению скорости коррозии нержавеющей стали AISI 316 во фторидных расплавах с различной концентрацией O2– (путем добавления в расплав оксида лития в диапазоне концентраций от 0 до 5 мас. %). В результате серии экспериментов установлено, что происходит снижение скорости коррозии на порядок при концентрации анионов кислорода в расплаве от 0.2 до 0.4 мас. %, что может свидетельствовать об обнаружении явления высокотемпературной пассивации материала за счет модифицирования состава фторидного расплава и снижения его коррозионной активности. Кроме того, типичный для нержавеющих сталей тип межкристаллитной и питтинговой коррозии во фторидных расплавах, наиболее опасной с точки зрения конструкционного реакторного материала, при добавлении оксида лития изменяется на сплошной за счет “залечивания” отдельных коррозионных очагов избыточными кислородсодержащими соединениями. Установлено образование защитного слоя шпинельного типа толщиной 1 мкм.

Об авторах

Э. А. Карфидов

Институт высокотемпературной электрохимии УрО РАН

Email: neekeetina@mail.ru
Россия, Екатеринбург

Ю. П. Зайков

Институт высокотемпературной электрохимии УрО РАН

Email: neekeetina@mail.ru
Россия, Екатеринбург

Е. В. Никитина

Институт высокотемпературной электрохимии УрО РАН

Автор, ответственный за переписку.
Email: neekeetina@mail.ru
Россия, Екатеринбург

К. Е. Селиверстов

Институт высокотемпературной электрохимии УрО РАН

Email: neekeetina@mail.ru
Россия, Екатеринбург

Список литературы

  1. Комаров В.Е, Смоленский В.В., Афоничкин В.К. Перспективы использования расплавленных солей в радиохимических технологиях // Расплавы. 2000. № 2. С. 59–65.
  2. LeBlanc D. // Nucl. Eng. Des. 2010. 240. P. 1644–1656. https://doi.org/10.101j.nucengdes.2009.12.033
  3. Khokhlov V., Ignatiev V., Afonichkin V. Evaluating physical properties of molten salt reactor fluoride mixtures // J. Fluorine Chemistry. 2009. 130. P. 30–37.
  4. Barnes J., Coutts R., Horne T., Thai J. Characterization of molten salts for application in molten salt reactors. PAM Review. 2019.
  5. Magnusson J., Memmott M., Munro T. Review of thermophysical property methods applied to fueled and un-fueled molten salts // Annals of Nuclear Energy. 2020. 146. P. 107608.
  6. Serp J., Allibert M., Benes O. Delpech S., Feynberg O. and other. The molten salt reactor (MSR) in generation IV: overview and perspectives // Prog. Nucl. Energy. 2014. 77. P. 308–319.
  7. Williams D.F. Assessment of candidate molten salt coolants for the advanced highi-temperature reactor (AHTR), 2006.
  8. Ядерные реакторы. Ч. 3. Материалы для ядерных реакторов. М.: Изд-во иностранной литературы, 1956.
  9. Менли В., Кубс Д., де Ван Д, Дуглас Д., Инуи Х., Пэтриарка П., Роч Т., Скотт Д. Металлургические проблемы, связанные с использованием расплавленных систем фторидов // Ядерное горючее и реакторные материалы. 1959. С. 36–52.
  10. Manly W.D., Adamson G.M., Coobs J.H., DeVan J.H., Douglas D.A., Hoffman E.E., Patriarca P., Aircraft reactor experiment-metallurgical aspects. ORNL-2349, 1957.
  11. Игнатьев В.В., Крюков О.В., Хаперская А.В. и др. Жидкосолевой реактор для замыкания ядерного топливного цикла по всем актиноидам // Атомная энергия. 2018. 125. № 5. С. 251–255.
  12. Young D.J. High Temperature Oxidation and Corrosion of Metals. Elsevier Science, 2016.
  13. Guo S., Zhang J., Wub W., Zhou W. Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications // Progress in Material Science. 2018. 97. P. 448–487.
  14. Wang Y., Zhang S., Ji X., Wang P., Li W. Material corrosion in molten fluoride salts // Int. J. Electrochem. Sci. 2018. 13. P. 4891–4900.
  15. DeVan J.H., Evans R.B. Corrosion behavior of reactor materials in fluoride salt mixtures. ORNL-TM-328, 1962.
  16. Janz G.J. // Molten Salts Handbook. 1967. P. 383–387. https://doi.org/10.1016/B978-0-12-395642-2.50032-0
  17. Olson L.C., Ambrosek J.W., Sridharan K., Anderson M.H., Allen T.R. Materials corrosion in molten LiF–NaF–KF salt // J. Fluorine Chem. 2009. 130. P. 67–73.
  18. Kelleher B.C., Dolan K.P., Brooks P., Anderson M.H., Sridharan K. // J. Nucl. Eng. Radiat. Sci. 2015. 1. № 4. P. 041010. https://doi.org/10.1115/1.4030963
  19. Zheng G., Kelleher B., Cao G., Anderson M., Allen T., Sridharan K. // J. Nucl. Mater. 2015. 46. P. 143–150. https://doi.org/10.1016/j.jnucmat.2015.03.004
  20. Yang X., Zhang D., Liu M., Feng S. and other // Corrosion Sci. 2016. 109. P. 62–67. https://doi.org/10.1016/j.corsci.2016.03.029
  21. De Van J.H. Effect of alloying additions of corrosion behavior of nickel-molybdenum alloys in fused fluoride mixtures. ORNL TM-2021, 1969.
  22. Ozeryanaya I.N. Corrosion of metals by molten-salts in heat-treatment processes // Met. Sci. Heat Treat. 1985. 27. № 3–4. P. 184–188.
  23. Fabre S., Cabet C., Cassayre L., Chamelot P., Delepech S., Finne J., Massot L., Noel D. Use of electrochemical techniques to study the corrosion of metals in model fluoride melts // J. Nucl. Mater. 2013. 441. P. 583–591.
  24. Delpech S., Cabet C., Slim C., Picard G.S. Molten fluorides for nuclear applications // Mater. Today. 2010. 13. № 12. P. 34–41.
  25. Raiman S.S., Lee S. Aggregation and data analysis of corrosion studies in molten chloride and fluoride salts // J. Nuclear Materials. 2018. 511. P. 523–535.

Дополнительные файлы


© Э.А. Карфидов, Ю.П. Зайков, Е.В. Никитина, К.Е. Селиверстов, 2022

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».