Influence of heat treatment on the structure of a blank made of heat-resistant nickel alloy EP741NP from metal powder obtained by gas atomization

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The prospects of using granule metallurgy technology for manufacturing gas turbine engine (GTE) disk blanks are considered. It is shown that there are two main methods for obtaining powder for manufacturing gas turbine engine parts – gas atomization and centrifugal spraying of cast high-speed rotating blanks. The main advantages and disadvantages of the above methods of obtaining metal powders are considered. Metal powder was obtained from heat-resistant nickel alloy EP741NP by gas atomization. The mode of hot isostatic pressing of the compacted blank was carried out. The chemical composition of the EP741NP alloy blank after hot isostatic pressing (HIP) was studied. Samples were cut to assess the effect of heat treatment on the structure of the studied blank. Factors influencing the selection of heat treatment modes for samples were analyzed. he heat treatment modes were selected to assess the influence of temperature-time parameters on the structure of the studied samples of the obtained HIP workpiece. The results of the microstructure analysis after HIP and heat treatment (HT) of the workpiece made of heat-resistant nickel alloy EP741NP from metal powder obtained by gas atomization are presented. The changes in the composition and quantity of carbide phases during heating are analyzed. The processes occurring during the decomposition of a supersaturated solid solution, coagulation of primary and secondary phases, dissolution of primary and secondary phases, and melting are considered. The temperature and time parameters at which the greatest change in the amount of carbide phases occurs are recorded. The results of digital analysis of the distribution of the intermetallic phase after hot isostatic pressing and heat treatment at the periphery and in the center of the samples are presented. The results of the influence of heat treatment on the formation of intermetallic phases are presented, and the influence of the selected heat treatment modes on the structure and grain grade of the studied samples is considered. Microstructural analysis of samples after hot isostatic pressing and various heat treatment modes was performed using optical and scanning electron microscopy. An optimal heat treatment mode was selected that promotes an increase in the volume fraction and average diameter of intermetallic phase components of the EP741NP alloy structure.

About the authors

A. A. Demchenko

JSC Ruspolimet

Author for correspondence.
Email: alinademchenko88@gmail.com
Kulebaki, Russian Federation

A. A. Khlybov

NSTU named after R.E. Alekseev

Email: hlybov_52@mail.ru
Nizhny Novgorod, Russian Federation

A. I. Demchenko

LLC Grankom

Email: demchenko.alesha@mail.ru
Kulebaki, Russian Federation

References

  1. Garibov G.S, Vostrikov A.V., Gric N.M. Razrabotka novyh granulirovannyh zharoprochnyh nikelevyh splavov dlya proizvodstva diskov i valov aviacionnyh dvigatelej // Tekhnologiya legkih splavov. 2010. № 2. P. 34–43. [In Russian]
  2. Volkov A.M., Vostrikov A.V., Bakradze M.M. Principy sozdaniya i osobennosti legirovaniya granuliruemyh zharoprochnyh nikelevyh splavov dlya diskov GTD // Trudy VIAM. 2016. № 8 (44). P. 10–16. [In Russian]
  3. Garibov G.S. Otechestvennye granulirovannye materialy dlya gazoturbinnyh tekhnologij // Tekhnologiya legkih splavov. 2016. № 4. P. 24–27. [In Russian]
  4. Peredovye inzhenernye shkoly: materialy, tekhnologii, konstrukcii: materialy I Mezhdunarodnoj nauchno-prakticheskoj konferencii molodyh uchenyh, aspirantov i studentov // g. Perm’, 2024, Permskij nacional’nyj issledovatel’skij politekhnicheskij universitet. P. 96–97. [In Russian]
  5. Kazberovich A.M., Ber L.B., Egorov D.A. i dr. Povyshenie kompleksa harakteristik zagotovok diskov iz granul splava EP741NP dlya perspektivnyh GTD // Tekhnologiya legkih splavov. 2020. № 4. P. 36–46. [In Russian]
  6. Beresnev A.G., Logunov A.V., Logacheva A.I. Problemy povysheniya kachestva zharoprochnyh splavov, poluchaemyh metodom metallurgii granul // Vestnik MAI. 2008.15. № 3. P. 83–89. [In Russian]
  7. Zhang G.Q. Research and Development of High Temperature Structural Materials for Aero-Engine Application // Acta Metallurgicasinica. August 2005.18. № 4. P. 443–452.
  8. Garibov G.S. Sozdanie tekhnologii metallurgii granul zharoprochnyh nikelevyh splavov – naibolee yarkaya stranica v istorii razvitiya vserossijskogo instituta legkih splavov // Tekhnologiya legkih splavov. 2021. № 2. P. 37–47. [In Russian]
  9. Ageev S.V., Girshov V.L. Goryachee izostaticheskoe pressovanie v poroshkovoj metallurgii // Metalloobrabotka. 2015. № 4 (88). P. 56–60. [In Russian]
  10. Beresnev A.G., Logunov A.V., Logacheva A.I. Problemy povysheniya kachestva zharoprochnyh splavov, poluchaemyh metodom metallurgii granul // Vestnik MAI. 2008.15. № 3. P. 83–89. [In Russian]
  11. Koshelev V.YA., Garibov G.S., Suhov D.I. Osnovnye zakonomernosti processa polucheniya granul zharoprochnyh nikelevyh splavov metodom plazmennogo raspyleniya vrashchayushchejsya zagotovki // Tekhnologiya legkih splavov. 2015. № 3. P. 97–103. [In Russian]
  12. Volkov A.M., Shestakova A.A., Bakradze M.M. i dr. Sravnenie granul, poluchennyh metodami gazovoj atomizacii i centrobezhnogo raspyleniya lityh zagotovok, s tochki zreniya primeneniya ih dlya izgotovleniya diskov GTD iz zharoprochnyh nikelevyh splavov // TRUDY VIAM. 2018. № 11 (71). P. 12–18. [In Russian]
  13. Innovacionnye tekhnologii v materialovedenii i mashinostroenii (ITMM-2023): materialy VII Vserossijskoj nauchno-prakticheskoj konferencii s mezhdunarodnym uchastiem, g. Perm’, 2023 g., Permskij nacional’nyj issledovatel’skij politekhnicheskij universitet. P. 89–92. [In Russian]
  14. Lopatin N.V., Bubnov M.V., Rogalev A.M. i dr. Izotermicheskaya shtampovka zagotovok diska iz splava EP741-NP, poluchennyh metodami poroshkovoj metallurgii // Aviacionnye materialy i tekhnologii. 2014. № S5. P. 31–37. [In Russian]
  15. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tekhnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharopronyh splavov // Aviacionnye materialy i tekhnologii. 2012. № 5. P. 129–141. [In Russian].
  16. Razuvaev E.I., Bubnov M.V., Bakradze M.M. GIP i deformaciya granulirovannyh zharoprochnyh nikelevyh splavov // Aviacionnye materialy i tekhnologii. 2016. № S1 (4). P. 80–86. [In Russian]
  17. Rice D., Kantzos P., Hann B. et al. P/M alloy 10 – А 700°C capable nickelbased superalloy for turbine disk applications // Superalloys. USA: TMS. 2008. P. 139–147.
  18. Materials Needs and R&D stratergy for future military aerospace propulsion systems. Consensus Study Report. USA: Washington. 2011.
  19. Ber L.B., Eremenko V.I., Ponomoryova E.YU. i dr. Vliyanie rezhimov zakalki na morfologiyu chastic γʹ-fazy i predel tekuchesti zagotovok turbinnyh diskov iz granulirovannogo splava EP741NP // Tekhnologiya lyogkih splavov. 2008. № 1. P. 37–46. [In Russian]
  20. Vaulin D.D., Vlasova O.N. i dr. Issledovanie mekhanizma formirovaniya struktury pri goryachej deformacii i termicheskoj obrabotke zagotovok turbinnyh diskov iz granulirovannogo splava EP741NP // Tekhnologiya legkih splavov. 2009. № 4. P. 32–42. [In Russian]
  21. Bakradze M.M., Volkov A.M., Shestakova A.A. i dr. Osobennosti izmeneniya razmera zeren v diskovom granuliruemom zharoprochnom nikelevom splave, proizvedennom po razlichnym tekhnologiyam // Trudy VIAM. 2018. № 2 (62). P. 3–11. [In Russian]

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».