ANODIC PROCESSES OF URANIUM ALLOYS CONTAINING PALLADIUM AND NEODYMIUM IN 3LiCl–2KCl-UCl3 MELTS

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

At the reprocessing module of the pilot demonstration power complex site of the Siberian Chemical Combine, a combined technological scheme for the reprocessing of mixed nitride uranium-plutonium spent fuel consisting of pyrochemical operations, hydrometallurgical refining of uranium, plutonium and neptunium is implemented step by step. According to this scheme, the target pyrochemical reprocessing products, purified from the main mass of fission products with actinoid content not less than 99.9%, are sent for hydrometallurgical reprocessing. For pyrochemical reprocessing it is necessary to develop a technology of electrorefining of metallised spent nuclear fuel. To carry out electrolytic refining it is necessary to define processes and regimes of anodic dissolution of alloys simulating product of this head operation “metallization”. In the present work the results of investigations of processes of anodic dissolution of U–Pd and U–Pd–Nd model alloys with different concentrations of palladium and neodymium in melts based on 3LiCl–2KCl–UCl3 (10.1 wt % UCl3) at 550°C using different methods are presented. Uranium alloys containing palladium and neodymium were prepared by direct alloying of uranium metal and palladium metal powders of PdAP-1 grade, and neodymium metal (99.99%) in high-purity argon medium (99.998%). Electrochemical measurements were performed using an Autolab 302N potentiostat/halvanostat equipped with a Booster 20A high-current module. The anodic polarisation curves consist of only one oxidation wave which was attributed to the dissolution of uranium metal. Increasing the palladium content in the alloy from 1.5 to 10.0 wt %, does not affect the shape of the polarisation curves. The increase of neodymium content in the alloy from 1.0 to 10.0 wt % also does not affect the shape of polarization curves. Electrorefining parameters of uranium alloys containing palladium and neodymium were determined. The limiting current density of uranium evolution from uranium alloys containing palladium and neodymium in the electrolyte 3LiCl–2KCl–UCl3 (10.1 wt % UCl3) at 550°C was 0.4 A/cm2. It was shown that palladium does not diffuse into the melt as a result of anodic dissolution and neodymium accumulates in the electrolyte only when the alloy is refined with 10.0 wt % neodymium, which is much higher than the future real concentrations of electrotreated uranium alloy components in the technological chain of spent nuclear fuel processing.

Авторлар туралы

D. Nikitin

Ural Federal University

Хат алмасуға жауапты Автор.
Email: house.freshone@ya.ru
Russia, Yekaterinburg

I. Polovov

Ural Federal University

Email: house.freshone@ya.ru
Russia, Yekaterinburg

O. Rebrin

Ural Federal University

Email: house.freshone@ya.ru
Russia, Yekaterinburg

A. Shchetinsky

Ural Federal University

Email: house.freshone@ya.ru
Russia, Yekaterinburg

A. Dedyukhin

Ural Federal University

Email: house.freshone@ya.ru
Russia, Yekaterinburg

Әдебиет тізімі

  1. Imoto S. Chemical state of fission products in irradiated UO2 // Journal Nuclear Materials. 1986. 140. № 1. P. 19–27.
  2. Bush R.P., Recovery of platinum group metals from high levelradioactive waste. Possibilities of separation and use re-evaluated // Platinum Metals Reviews. 1991. 35. № 4. P. 202–208.
  3. Lyubimov D.Yu., Deryabin I.A., Bulatov G.S., Gedgovd K.N., Termodinamicheskoe modelirovanie fazovogo sostava smeshannogo uranplutonievogo mononitrida s primes’yu kisloroda pri obluchenii do vygoraniya 140 GVt · sut/t i temperature 900–1400 K [Thermodynamic modeling of the phase composition of mixed uranium-plutonium mononitride with an admixture of oxygen under irradiation to a burnup of 140 GW · day/t and a temperature of 900–1400 K] // Atomnaya energiya. 2015. 118. № 1. P. 24–19. [In Russian].
  4. Bulatov G.S., Gedgovd K.N., Lyubimov D.YU., Termodinamicheskij analiz himicheskogo i fazovogo sostavov obluchennogo bystrymi nejtronami uran-plutonievogo nitrida v zavisimosti ot temperatury i vygoraniya [Thermodynamic analysis of the chemical and phase compositions of uranium-plutonium nitride irradiated with fast neutrons depending on temperature and burnup] // Materialovedenie. 2009. 1. P. 2–7. [In Russian].
  5. Kleykamp H., The chemical state of the fission products in oxide fuels // Journal Nuclear Materials. 1985. 131. № 2–3. P. 221–246.
  6. Middlemas S.C., Craig M.M., Adkins C.A., Lemma F.D., Tolman K.R., Benson M.T., Hin C.J. Effects of intermetallic compounds on the thermophysical properties of uranium–palladium alloys // Alloys and Compounds. 2021.
  7. Prasad R., Dash S., Parida S.C., Singh Z., Venugopal V.J., Gibbs energy of formation of UPd3(s) // Journal Nuclear Materials. 2000. 277. № 1. P. 45–48.
  8. Kleykamp H., Highlights of experimental thermodynamics in the field of nuclear fuel development // Journal Nuclear Materials. 2005. 344. № 1–3. P. 1–7.
  9. Cordfunke E.H.P., Muis R.P., Wijbenga G., Burriel R., Zainel H., To M., Westrum. E.F. Jr. Thermodynamics of uranium intermetallic compounds. I. Heat capacity of UPd3 from 5 to 850 K // The Journal of Chemical Thermodynamics. 1988. 20. P. 815–823.
  10. Kesikopulos V.A., Potapov A.M., Dedyuhin A.E., Zajkov Y.P. Izgotovlenie intermetallida UPd3 i issledovanie ego termodinamicheskih harakteristik [Production of UPd3 intermetallic compound and study of its thermodynamic characteristics] // Sbornik trudov seminara “Elektrohimiya v raspredelennoj i atomnoj energetike”. Nalchik. Azhur. 2022. P. 224–226. [In Russian].
  11. Strepetov K.E., Osipenko A.A., Volkovich V.A., Electrochemical behavior of uranium–palladium alloys in molten eutectic mixture of lithium, potassium and cesium chlorides // AIP Conference Proceedings 2022. 2466. № 1. P. 050033.
  12. Okamoto H., Pd–U (Palladium–Uranium) // Journal of Phase Equilibria. 1992. 13. № 2. P. 222–223.
  13. Parnell D.G., Brett N.H., Haines H.R., Potter P.E. Phase relationships in the ternary system U–Nd–Pd // Journal of the Less Common Metals. 1986. 118. № 1. P. 141–152.
  14. Zolotarev D.A., Nikitin D.I., Polovov I.B., Electrode processes in 3LiCl–2KCl–UCl3 melts: Investigation of temperature and uranium concentration influence // AIP Conference Proceedings 2019. 2174. № 1. P. 020276.
  15. D.I. Nikitin, I.B. Polovov, A.V. Shchetinskij, A.S. Dedyuhin, V.A. Volkovich, Rebrin O.I. Processy anodnogo rastvoreniya splavov U–Pd v rasplavah 3LiCl–2LCl–UCl3 [Processes of anodic dissolution of U–Pd alloys in 3LiCl–2KCl–UCl3 melts] // Sbornik trudov seminara “Elektrohimiya v raspredelennoj i atomnoj energetike”. Nalchik. Azhur. 2022. P. 294–297. [In Russian].
  16. Hames A.L., Paulenova A., Willit J.L., Williamson M.A. Phase Equilibria Studies of the LiCl–KCl–UCl3 System // Journal Nuclear Technology. 2018. 203. № 3. P. 272–281.

© Д.И. Никитин, И.Б. Половов, О.И. Ребрин, А.В. Щетинский, А.С. Дедюхин, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>