SELECTION OF CONDITIONS FOR PRODUCING ALLOYS BY ELECTROLYSIS OF CHLORIDE MELTS
- Authors: Isakov A.V1, Apisarov A.P1, Grishenkova O.V1
-
Affiliations:
- Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences
- Issue: No 6 (2025)
- Pages: 582–594
- Section: Articles
- URL: https://journals.rcsi.science/0235-0106/article/view/355829
- DOI: https://doi.org/10.7868/S3034571525060037
- ID: 355829
Cite item
Abstract
Keywords
About the authors
A. V Isakov
Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences
Email: isakov@ihte.ru
Ekaterinburg, Russia
A. P Apisarov
Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of SciencesEkaterinburg, Russia
O. V Grishenkova
Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences
Email: o.grishenkova@ihte.ru
Ekaterinburg, Russia
References
- Барабошкин А.Н. Электрокристаллизация металлов из расплавленных солей. М.: Наука, 1976.
- Huang Y., Zhu L., Ye Y., Zhang H., Bai S. Iridium coatings with various grain structures prepared by electrodeposition from molten salts: Growth mechanism and high temperature oxidation resistance // Surf. Coat. Technol. 2017. 325. P. 190–199. https://doi.org/10.1016/j.surfcoat.2017.06.057
- Vinogradov-Zhabrov O.N., Minchenko L.M., Esina N.O., Pankratov A.A. Electrodeposition of rhenium from chloride melts – electrochemical nature, structure and applied aspects // J. Min. Met. B 2003. 39B. P. 149–166. https://doi.org/10.2298/JMMB0302149V
- Saltykova N.A. Electrodeposition of platinum metals and alloys from chloride melts // J. Min. Met. B 2003. 39B. P. 201–208. https://doi.org/10.2298/JMMB0302201S
- Молчанов А.М. Электроосаждение вольфрама из расплавленных солей. Екатеринбург: РИО УрО РАН, 2014.
- Kuznetsov S.A. Electrochemistry of refractory metals in molten salts: application for the creation of new and functional materials // Pure Appl. Chem. 2009. 81. P. 1423–1439. https://doi.org/10.1351/PAC-CON-08-08-09
- Isakov A.V., Chernyshev A.A., Apisarov A.P., Zaikov Y.P. Electrodeposition of alloys from halide melts in solid state // Electrochem. Mater. Technol. 2024. 3. № 2. P. 20243036. https://doi.org/10.15826/elmattech.2024.3.036
- Saltykova N.A., Portnyagin O.V. Electrodeposition of Ir–Ru Alloys from Chloride Melts: Steady-State Potentials and Cathodic Processes // Russ. J. Electrochem. 2000. 36. P. 784–788. https://doi.org/10.1007/BF02757681
- Saltykova N.A., Portnyagin O.V. Electrodeposition of Iridium–Ruthenium Alloys from Chloride Melts: The Structure of the Deposits // Russ. J. Electrochem. 2001. 37. P. 924–930. https://doi.org/10.1023/A:1011944226271
- Etenko A., McKechnie T., Shchetkovskiy A., Smirnov A. Oxidation-Protective Iridium and Iridium-Rhodium Coating Produced by Electrodeposition from Molten Salts // ECS Trans. 2007. 3. P. 151–157. https://doi.org/10.1149/1.2721466
- Gu Y., Liu J., Qu S., Deng Y., Han X., Hu W., Zhong C. Electrodeposition of alloys and compounds from high-temperature molten salts // J. Alloys Compd. 2017. 690. P. 228–238. https://doi.org/10.1016/j.jallcom.2016.08.104
- De Silva U., Coons T.P. Molten Salt Electrodeposition: Review // Energies 2024. 17. P. 3832. https://doi.org/10.3390/en17153832
- Исаев В.А. Электрохимическое фазообразование. Екатеринбург: УрО РАН, 2007.
- Смирнов М.В. Электродные потенциалы в расплавленных хлоридах. М.: Наука, 1973.
- Морачевский А.Г., Поляков Е.Г., Стангрит П.Т. Академик Алексей Николаевич Барабошкин (1925–1995) // ЖПХ. 2000. 73. № 10. С. 1737–1738.
- Хохлов В.А., Кудяков В.Я., Исаев В.А. Памяти академика А.Н. Барабошкина (12.11.1925–27.06.1995 гг.) // Электрохимия 2000. 36. № 11. С. 1423–1424.
- Гришенкова О.В., Семерикова О.Л. Электрокристаллизация в расплавленных солях: к 100-летию со дня рождения академика Алексея Николаевича Барабошкина // Расплавы. 2025. № 6. С. 557—568.
- Toenshoff D., Lanam R., Ragaini J., Shchetkovskiy A., Smirnov A. Iridium coated rhenium rocket chambers produced by electroforming. In: Proc. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. Las Vegas: AIAA, 2000. P. AIAA 2000-3166. https://doi.org/10.2514/6.2000-3166
- Zaluki M., Hasanof T., Shchetkovskiy A., McKechnie T., Cavender D., Burnside C., Dankanich J. Green Monopropellant 100mN Thruster. In: AIAA Propulsion and Energy 2021 Forum (virtual event), 2021. https://doi.org/10.2514/6.2021-3591
- Исаков А.В., Аписаров А.П., Никитина А.О. Электролитическое получение и отжиг материала Ir – Re – Ir // Цветные металлы. 2017. № 11. С. 55–60. https://doi.org/10.17580/tsm.2017.11.10
- Wu W., Chen Z. Iridium Coating: Processes, Properties and Application. Part I. Processes for protection in high-temperature environments against oxidation and corrosion // Johnson Matthey Technol. Rev. 2017. 61. P. 16–28. https://doi.org/10.1595/205651317X693606
- Isakov A.V., Grishenkova O.V., Zaikov Y.P. Electrodeposition of Iridium and Rhenium Layers from Molten Salts and Behavior of Ir/Re-based Coatings under High-Temperature Oxidation Conditions // J. Electrochem. Soc. 2025. 172. P. 082502. https://doi.org/10.1149/1945-7111/adf775
- Lee Y.-J., Lee T.-H., Nersisyan H.H., Lee K.-H., Jeong S.-U., Kang K.-S., Bae K.-K., Park K.-T., Lee J.-H. Characterization of Ta-W Alloy Films Deposited by Molten Salt Multi-Anode Reactive Alloy Coating (MARC) Method // Int. J. Refract. Metals Hard Mater. 2015. 53. P. 23–31. https://doi.org/10.1016/j.ijrmhm.2015.04.022
- Lee Y.-J., Park D.-J., Kang K.-S., Bae G.-G., Han M.-H., Lee J.-H. Molten Salt Multi-Anode Reactive Alloy Coating (Marc) of Ta-W Alloy on Sus316l. In: Proc. 8th Pacific Rim International Congress on Advanced Materials and Processing. Cham: Springer, 2013. P. 1975–1981. https://doi.org/10.1007/978-3-319-48764-9_245
- Polyakova L.P., Taxil P., Polyakov E.G. Electrochemical Behaviour and Codeposition of Titanium and Niobium in Chloride–Fluoride Melts // J. Alloys Compd. 2003. 359. P. 244–255. https://doi.org/10.1016/S09258388(03)00180-4
- Zhang S., Hu K., Zhao X., Liang J., Li Y. Study on Diffusion Kinetics of Chromium and Nickel Electrochemical Co-Deposition in a NaCl–KCl–NaF–Cr2O3–NiO Molten Salt // High Temperature Mater. Processes 2023. 42. P. 20220276. https://doi.org/10.1515/htmp-2022-0276
- Ahmad I., Spiak W.A., Janz G.J. Electrodeposition of Tantalum and Tantalum-Chromium Alloys // J. Appl. Electrochem. 1981. 11. P. 291–297. https://doi.org/10.1007/BF00613946
- Gussone J., Vijay C.R.Y., Watermeyer P., Milicevic K., Friedrich B., Haubrich J. Electrodeposition of Titanium–Vanadium Alloys from Chloride-Based Molten Salts: Influence of Electrolyte Chemistry and Deposition Potential on Composition, Morphology and Microstructure // J. Appl. Electrochem. 2020. 50. P. 355–366. https://doi.org/10.1007/s10800-019-01385-0
- Ueda M., Hayashi H., Ohtsuka T. Electrodeposition of Al–Pt Alloys Using Constant Potential Electrolysis in AlCl3–NaCl–KCl Molten Salt Containing PtCl2 // Surf. Coat. Technol. 2011. 205 P. 4401–4403. https://doi.org/10.1016/j.surfcoat.2011.03.051
- Sato K., Matsushima H., Ueda M. Electrodeposition of Al-Ta Alloys in NaCl-KCl-AlCl3 Molten Salt Containing TaCl5 // Appl. Surf. Sci. 2016. 388. P. 794–798. https://doi.org/10.1016/j.apsusc.2016.03.001
- Ueda M., Kigawa H., Ohtsuka T., Co-Deposition of Al–Cr–Ni Alloys Using Constant Potential and Potential Pulse Techniques in AlCl3–NaCl–KCl Molten Salt // Electrochim. Acta 2007. 52. P. 2515–2519. https://doi.org/10.1016/j.electacta.2006.09.001
Supplementary files


