SELECTION OF CONDITIONS FOR PRODUCING ALLOYS BY ELECTROLYSIS OF CHLORIDE MELTS
- Авторлар: Isakov A.V1, Apisarov A.P1, Grishenkova O.V1
-
Мекемелер:
- Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences
- Шығарылым: № 6 (2025)
- Беттер: 582–594
- Бөлім: Articles
- URL: https://journals.rcsi.science/0235-0106/article/view/355829
- DOI: https://doi.org/10.7868/S3034571525060037
- ID: 355829
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
A. Isakov
Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences
Email: isakov@ihte.ru
Ekaterinburg, Russia
A. Apisarov
Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of SciencesEkaterinburg, Russia
O. Grishenkova
Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences
Email: o.grishenkova@ihte.ru
Ekaterinburg, Russia
Әдебиет тізімі
- Барабошкин А.Н. Электрокристаллизация металлов из расплавленных солей. М.: Наука, 1976.
- Huang Y., Zhu L., Ye Y., Zhang H., Bai S. Iridium coatings with various grain structures prepared by electrodeposition from molten salts: Growth mechanism and high temperature oxidation resistance // Surf. Coat. Technol. 2017. 325. P. 190–199. https://doi.org/10.1016/j.surfcoat.2017.06.057
- Vinogradov-Zhabrov O.N., Minchenko L.M., Esina N.O., Pankratov A.A. Electrodeposition of rhenium from chloride melts – electrochemical nature, structure and applied aspects // J. Min. Met. B 2003. 39B. P. 149–166. https://doi.org/10.2298/JMMB0302149V
- Saltykova N.A. Electrodeposition of platinum metals and alloys from chloride melts // J. Min. Met. B 2003. 39B. P. 201–208. https://doi.org/10.2298/JMMB0302201S
- Молчанов А.М. Электроосаждение вольфрама из расплавленных солей. Екатеринбург: РИО УрО РАН, 2014.
- Kuznetsov S.A. Electrochemistry of refractory metals in molten salts: application for the creation of new and functional materials // Pure Appl. Chem. 2009. 81. P. 1423–1439. https://doi.org/10.1351/PAC-CON-08-08-09
- Isakov A.V., Chernyshev A.A., Apisarov A.P., Zaikov Y.P. Electrodeposition of alloys from halide melts in solid state // Electrochem. Mater. Technol. 2024. 3. № 2. P. 20243036. https://doi.org/10.15826/elmattech.2024.3.036
- Saltykova N.A., Portnyagin O.V. Electrodeposition of Ir–Ru Alloys from Chloride Melts: Steady-State Potentials and Cathodic Processes // Russ. J. Electrochem. 2000. 36. P. 784–788. https://doi.org/10.1007/BF02757681
- Saltykova N.A., Portnyagin O.V. Electrodeposition of Iridium–Ruthenium Alloys from Chloride Melts: The Structure of the Deposits // Russ. J. Electrochem. 2001. 37. P. 924–930. https://doi.org/10.1023/A:1011944226271
- Etenko A., McKechnie T., Shchetkovskiy A., Smirnov A. Oxidation-Protective Iridium and Iridium-Rhodium Coating Produced by Electrodeposition from Molten Salts // ECS Trans. 2007. 3. P. 151–157. https://doi.org/10.1149/1.2721466
- Gu Y., Liu J., Qu S., Deng Y., Han X., Hu W., Zhong C. Electrodeposition of alloys and compounds from high-temperature molten salts // J. Alloys Compd. 2017. 690. P. 228–238. https://doi.org/10.1016/j.jallcom.2016.08.104
- De Silva U., Coons T.P. Molten Salt Electrodeposition: Review // Energies 2024. 17. P. 3832. https://doi.org/10.3390/en17153832
- Исаев В.А. Электрохимическое фазообразование. Екатеринбург: УрО РАН, 2007.
- Смирнов М.В. Электродные потенциалы в расплавленных хлоридах. М.: Наука, 1973.
- Морачевский А.Г., Поляков Е.Г., Стангрит П.Т. Академик Алексей Николаевич Барабошкин (1925–1995) // ЖПХ. 2000. 73. № 10. С. 1737–1738.
- Хохлов В.А., Кудяков В.Я., Исаев В.А. Памяти академика А.Н. Барабошкина (12.11.1925–27.06.1995 гг.) // Электрохимия 2000. 36. № 11. С. 1423–1424.
- Гришенкова О.В., Семерикова О.Л. Электрокристаллизация в расплавленных солях: к 100-летию со дня рождения академика Алексея Николаевича Барабошкина // Расплавы. 2025. № 6. С. 557—568.
- Toenshoff D., Lanam R., Ragaini J., Shchetkovskiy A., Smirnov A. Iridium coated rhenium rocket chambers produced by electroforming. In: Proc. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. Las Vegas: AIAA, 2000. P. AIAA 2000-3166. https://doi.org/10.2514/6.2000-3166
- Zaluki M., Hasanof T., Shchetkovskiy A., McKechnie T., Cavender D., Burnside C., Dankanich J. Green Monopropellant 100mN Thruster. In: AIAA Propulsion and Energy 2021 Forum (virtual event), 2021. https://doi.org/10.2514/6.2021-3591
- Исаков А.В., Аписаров А.П., Никитина А.О. Электролитическое получение и отжиг материала Ir – Re – Ir // Цветные металлы. 2017. № 11. С. 55–60. https://doi.org/10.17580/tsm.2017.11.10
- Wu W., Chen Z. Iridium Coating: Processes, Properties and Application. Part I. Processes for protection in high-temperature environments against oxidation and corrosion // Johnson Matthey Technol. Rev. 2017. 61. P. 16–28. https://doi.org/10.1595/205651317X693606
- Isakov A.V., Grishenkova O.V., Zaikov Y.P. Electrodeposition of Iridium and Rhenium Layers from Molten Salts and Behavior of Ir/Re-based Coatings under High-Temperature Oxidation Conditions // J. Electrochem. Soc. 2025. 172. P. 082502. https://doi.org/10.1149/1945-7111/adf775
- Lee Y.-J., Lee T.-H., Nersisyan H.H., Lee K.-H., Jeong S.-U., Kang K.-S., Bae K.-K., Park K.-T., Lee J.-H. Characterization of Ta-W Alloy Films Deposited by Molten Salt Multi-Anode Reactive Alloy Coating (MARC) Method // Int. J. Refract. Metals Hard Mater. 2015. 53. P. 23–31. https://doi.org/10.1016/j.ijrmhm.2015.04.022
- Lee Y.-J., Park D.-J., Kang K.-S., Bae G.-G., Han M.-H., Lee J.-H. Molten Salt Multi-Anode Reactive Alloy Coating (Marc) of Ta-W Alloy on Sus316l. In: Proc. 8th Pacific Rim International Congress on Advanced Materials and Processing. Cham: Springer, 2013. P. 1975–1981. https://doi.org/10.1007/978-3-319-48764-9_245
- Polyakova L.P., Taxil P., Polyakov E.G. Electrochemical Behaviour and Codeposition of Titanium and Niobium in Chloride–Fluoride Melts // J. Alloys Compd. 2003. 359. P. 244–255. https://doi.org/10.1016/S09258388(03)00180-4
- Zhang S., Hu K., Zhao X., Liang J., Li Y. Study on Diffusion Kinetics of Chromium and Nickel Electrochemical Co-Deposition in a NaCl–KCl–NaF–Cr2O3–NiO Molten Salt // High Temperature Mater. Processes 2023. 42. P. 20220276. https://doi.org/10.1515/htmp-2022-0276
- Ahmad I., Spiak W.A., Janz G.J. Electrodeposition of Tantalum and Tantalum-Chromium Alloys // J. Appl. Electrochem. 1981. 11. P. 291–297. https://doi.org/10.1007/BF00613946
- Gussone J., Vijay C.R.Y., Watermeyer P., Milicevic K., Friedrich B., Haubrich J. Electrodeposition of Titanium–Vanadium Alloys from Chloride-Based Molten Salts: Influence of Electrolyte Chemistry and Deposition Potential on Composition, Morphology and Microstructure // J. Appl. Electrochem. 2020. 50. P. 355–366. https://doi.org/10.1007/s10800-019-01385-0
- Ueda M., Hayashi H., Ohtsuka T. Electrodeposition of Al–Pt Alloys Using Constant Potential Electrolysis in AlCl3–NaCl–KCl Molten Salt Containing PtCl2 // Surf. Coat. Technol. 2011. 205 P. 4401–4403. https://doi.org/10.1016/j.surfcoat.2011.03.051
- Sato K., Matsushima H., Ueda M. Electrodeposition of Al-Ta Alloys in NaCl-KCl-AlCl3 Molten Salt Containing TaCl5 // Appl. Surf. Sci. 2016. 388. P. 794–798. https://doi.org/10.1016/j.apsusc.2016.03.001
- Ueda M., Kigawa H., Ohtsuka T., Co-Deposition of Al–Cr–Ni Alloys Using Constant Potential and Potential Pulse Techniques in AlCl3–NaCl–KCl Molten Salt // Electrochim. Acta 2007. 52. P. 2515–2519. https://doi.org/10.1016/j.electacta.2006.09.001
Қосымша файлдар

