Corrosion behavior of AlNiCoCuZr high-entropy equiatomic alloy in NaCl solution

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The service characteristics of high-entropy alloys, in particular their corrosion properties, are the subject of active study by many scientific groups. Interest to high-entropy alloys is determined by their relative simplicity of production (most often by arc melting with low cooling rates), corrosion resistance and high values of mechanical properties (hardness, strength). A special place among high-entropy alloys is occupied by compositions based on aluminum and transition metals (nickel, iron, cobalt) due to their service characteristics comparable with some bulk-amorphous compositions. For wider industrial application of such alloys, information on the peculiarities of corrosion processes therein is required. Corrosion behavior of Al₂₀Ni₂₀Co₂₀Cu₂₀Zr₂₀ alloy in water solution of 5 wt % NaCl as a result of exposure for 1500 h at 25oC was investigated in present work. It was found that the alloy was subjected to minimal corrosion due to dissolution of nickel and cobalt, with a corrosion rate of 2.98±0.01 mg/m2h. By electrochemical measurements, the value of corrosion potential was found to be –0.19 V relative to the chlor-silver reference electrode, and polarization to the anodic region resulted in selective dissolution of nickel and cobalt.

Full Text

Restricted Access

About the authors

E. A. Karfidov

Institute of High Temperature Electrochemistry UB RAS

Email: rusanov@uspu.ru
Russian Federation, Yekaterinburg

E. V. Nikitina

Ural Federal University; Institute of High Temperature Electrochemistry UB RAS

Email: rusanov@uspu.ru
Russian Federation, Yekaterinburg; Yekaterinburg

B. A. Rusanov

Ural State Pedagogical University

Author for correspondence.
Email: rusanov@uspu.ru
Russian Federation, Yekaterinburg

References

  1. Wu M., Diao G., Yuan J.F. et al. // Wear. 2023. 523. P. 204765. https://doi.org/10.1016/j.wear.2023.204765
  2. Gorsse S., Nguyen M.H., Senkov O.N., Miracle D.B. // Data in Brief. 2018. 21. P. 2664–2678.https://doi.org/10.1016/j.dib.2018.11.111
  3. Sheng L., Zhengwei X., Yafeng L., Yun L., Dongsheng J., Ping W. // High Temp. Mater. and Proc. 2022. 41. № 1. P. 417–423. https://doi.org/10.1515/htmp-2022–0048
  4. Beyramali Kivy M., Asle Zaeem M., Lekakh S. // Mater. and Design. 2017. 127. P. 224–232. https://doi.org/10.1016/j.matdes.2017.04.086
  5. Guo S., Hu Q., Ng C., Liu C.T. // Intermet. 2013. 41. P. 96–103. https://doi.org/10.1016/j.intermet.2013.05.002
  6. Kulkarni R., Murty B.S., Srinivas V. // J. of Alloy. and Comp. 2018. 746. P. 194–199. https://doi.org/10.1016/j.jallcom.2018.02.275
  7. Guo S., Liu C. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase // Progr. in Nat. Sci.: Mater. Inter. 2011. 21. № 6. P. 433–446. https://doi.org/10.1016/S1002–0071(12)60080-X
  8. George E.P., Raabe D., Ritchie R.O. High-entropy alloys // Nat. Rev. Mater. 2019. 4. P. 515–534 https://doi.org/10.1038/s41578–019–0121–4
  9. Yan Y., Fang L., Tan Y. et al. // J. of Mater. Research and Tech. 2023. 24. P. 5250–5259. https://doi.org/10.1016/j.jmrt.2023.04.116
  10. Zan C., Chen J., Zhang H., Yuan J. // Inter. J. of Electrochem. Sci. 2023. 18. № 1. P. 100192. https://doi.org/10.1016/j.ijoes.2023.100192
  11. Yang J., Zeng Y., Zhu M. et al. // J. of Electrochem. Sci. 2023. 18. № 5. P. 100132. https://doi.org/10.1016/j.ijoes.2023.100132
  12. Zemanate A.M., Jorge Jr. A.M. // Electrochim. Acta. 2023. 441. P. 141844. https://doi.org/10.1016/j.electacta.2023.141844
  13. Yang H., Liu X., Li A. et al. // J. of Alloy. and Comp. 2023. 964. 171226. https://doi.org/10.1016/j.jallcom.2023.171226
  14. Wang J., Jiang H., Chang X. et al. // Corr. Sci. 2023. 221. P. 111313. https://doi.org/10.1016/j.corsci.2023.111313
  15. Shivam V., Basu J., Pandey V. et al. // Adv. Powd. Tech. 2018. 29. № 9. P. 2221–2230. https://doi.org/10.1016/j.apt.2018.06.006
  16. Rusanov B.A., Petrova S.A., Bykov V.A. et al. // Intermet. 2023. 161. P. 107975. https://doi.org/10.1016/j.intermet.2023.107975
  17. Edinaya Sistema zashity ot korrozii i stareniya. Metally i splavy. Desyatibal’naya shkala korrozionnoy stoykosty [Russian State Standard 13819–68 Unified system of protection against corrosion and aging. Metals and Alloys]. Moscow: Standards publisher, 1981. [In Russian].
  18. Lyr’e Y.Y. Spravochnik po analiticheskoy himii [Handbook on analytical chemistry]. M.: Nauka, 1979. [In Russian].

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1

Download (20KB)
3. Fig.2

Download (197KB)
4. Fig.3

Download (245KB)
5. Fig.4

Download (54KB)
6. Fig.5

Download (83KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies