Selection of the optimal composition of AlTiZrVNb coating using CALPHAD approaches

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

With the development of scientific and technological progress, the requirements for reliability (increased service life) of components and structural parts have changed. Machine components made from high‒carbon manganese steel are subject to wear, which can lead to increased costs. It is widely known that structures consisting of steel 76, GOST 51045‒97 are significantly wearing out. By modifying the surface layer using laser surfacing and subsequent melting, it becomes possible, through active mixing and rapid solidification that occurs during melting, not only to homogenize the structure, but also to implement hardening processes of the near‒surface layers of the most loaded (vulnerable) zones. Using the CALPHAD methods in the TermoCalc software package (software version number 2024.1.132110‒55), the effect of the applied protective coating (AlTiZrVNb) with subsequent melting on the change in the phase composition and distribution of elements on the outer crystalline layer of the substrate was simulated. An alloy of the composition Al31.17Ti18.55Zr1.56V27.53Nb21.19 was selected for the calculations. When laser radiation is applied to the deposited coating, active interaction of the coating components with the base metal (iron) is observed, resulting in the formation of a modified top layer containing new phases with iron in the composition. In this regard, using mathematical modeling, the Scheil method determined the crystallization rates and phases formed upon cooling in alloys located in the upper structure of the path after the reflow process: Al31.17Ti18.55Zr1.56V27.53Nb21.19, Al29.61Ti17.62Zr1.48V26.15Nb20.13Fe5.00, Al28.05Ti16.70Zr1.40V24.78Nb19.07Fe10.00, Al26.49Ti15.77Zr1.33V23.40Nb18.01Fe15.00, Al24.94Ti14.84Zr1.25V22.02Nb16.95Fe20.00, Al23.38Ti13.91Zr1.17V20.65Nb15.89Fe25.00, Al21.82Ti12.99Zr1.09V19.27Nb14.83Fe30.00, Al20.26Ti12.06Zr1.01V17.89Nb13.77Fe35.00, Al18.70Ti11.13Zr0.94V16.52Nb12.71Fe40.00, Al15.59Ti9.28Zr0.78V13.77Nb10.60Fe50.00, Al12.47Ti7.42Zr0.62V11.01Nb8.48Fe60.00. The crystallization process from 1600 to 500 °С of the obtained compositions is described using computational methods. When studying the solidification process, it was determined for all compositions that the iron content in the coating is about 10–25 at.% favorable for the formation of a good‒quality coating, since at these concentrations the material is in a single‒phase region.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Kiselev

Ural Federal University named after the first President of Russia B. N. Yeltsin

Email: terekhovaalisia@yandex.ru
Ресей, Mira str., 32, 620002, Ekaterinburg

А. Terekhova

Ural Federal University named after the first President of Russia B. N. Yeltsin

Хат алмасуға жауапты Автор.
Email: terekhovaalisia@yandex.ru
Ресей, Mira str., 32, 620002, Ekaterinburg

I. Bakhteev

Ural Federal University named after the first President of Russia B. N. Yeltsin

Email: terekhovaalisia@yandex.ru
Ресей, Mira str., 32, 620002, Ekaterinburg

K. Litvinyuk

South Ural State University (national research university)

Email: terekhovaalisia@yandex.ru
Ресей, 76 Lenin Av., 454080, Chelyabinsk

K. Oleinik

Ural Federal University named after the first President of Russia B. N. Yeltsin; Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences

Email: 1007o1007@gmail.com
Ресей, Mira str., 32, 620002, Ekaterinburg; Amundsen str., 101, 620016, Ekaterinburg

Әдебиет тізімі

  1. Ranjan R. Protection from corrosion and wear by different weld cladding techniques / Ranjan R., Das A. K // Materials Today: Proceedings. 2022. 57 (4). P. 1687–1693.
  2. Oleynik K.I., Bakhteev I.S., Russkikh A.S., Osinkina T.V., Zhilina E.M. Naplavlenie mnogokomponentnyh splavov, soderzhashchih tugoplavkie metally [Surfacing of multicomponent alloys containing refractory metals] // Rasplavy (Melts). 2024. №1. P. 90–100. [In Russian]
  3. Jindal, Chamkaur & Sidhu, Buta & Kumar, Pardeep & Sidhu, Hazoor. Performance of hardfaced/heat treated materials under solid particle erosion: A systematic literature review // Materials Today: Proceedings. 2022. 50. №5. 2022. P. 629–639.
  4. Grigoryants A.G., Shiganov I.N., Misyurov A.I. Teoreticheskie osnovy lazernoj obrabotki: monografiya [Theoretical foundations of laser processing: monograph] / red. Grigor’yanc A.G. M.: Izd‒vo MGTU im. N. E. Baumana [edited by Grigoryants A. G. Moscow: Publishing house of Bauman Moscow State Technical University]. 2022. [In Russian]
  5. Devoyno O.G., Turichin G.A., Kardapolova M.A., Kasach Yu.I., Pogudo E.V., Kosyakova I.M. Tribotekhnicheskie harakteristiki kompozicionnyh pokrytij na nikelevoj osnove, poluchennyh gibridnymi tekhnologiyami [Tribological characteristics of nickel‒based composite coatings obtained by hybrid technologies] // Nauka i tekhnika [Science and Technology]. 2023. 22. №6. 450–459. [In Russian]
  6. Devoino O.G., Kardapolova M.A., Kalinichenko A.S., Zharskii V.V., Vasilenko A.G. Technology of Forming Wear‒Resistant Coatings on an Iron Base by Laser Treatment Methods (BNTU, Minsk, 2020).
  7. Yousub L., Nordin M., Sudarsanam B., Farson D. Influence of Fluid Convection on Weld Pool Formation in Laser Cladding // Welding journal. 2014. 93. P. 292‒300.
  8. Bakhteyev I.S., Oleinik K.I., Litvinyuk K.S., Furman E.L., Valiev R.M. Podbor optimal’nogo sostava plazmennogo pokrytiya sistemy Ni‒B‒Si metodom CALPHAD vozdushnyh domennyh furm [Selection of the power of plasma coating of Ni‒B‒Si by the CALPHAD method of air blast bellows] // Rasplavy (Melts). 2025. № 2 (in press). [In Russian]
  9. Yongfei J., Li J., Jiang Y.Q., Jia W.L., Lu, Z.J. Modified criterions for phase prediction in the multi‒component laser‒clad coatings and investigations into microstructural evolution/wear resistance of FeCrCoNiAlMox laser‒clad coatings // Applied Surface Science. 2019. 465. P. 700–714.
  10. Zhilina E.M., Russkikh A.S., Krasikov S.A. et al. Synthesis of high‒entropy alloy AlTiZrVNb by aluminothermic reaction // Russian Journal of Inorganic Chemistry. 2022. 67. № 6. P. 888–891.
  11. Balakirev V.F., Osinkina T.V., Krasikov S.A. et al. Joint metallothermic reduction of titanium and rare refractory metals of group V // Russian Journal of Non‒Ferrous Metals. 2021. 62. № 2. P. 190–196.
  12. Karfidov E.A., Nikitina E.V., Rusanov B.A. Korrozionnoe povedenie vysokoentropijnogo splava AlNiCoCuZr ekviatomnogo sostava v rastvore NaCl [Corrosion behavior of high‒entropy AlNiCoCuZr alloy of equiatomic composition in NaCl solution] // Rasplavy (Melts). 2024. №1. P. 82–89. [In Russian]
  13. Nikolaenko A.A., Tretyak P.A., Bystrov A.V. Povrezhdeniya i otkazy rel’sov na zapadno‒sibirskoj zheleznoj doroge // Vestnik Sibirskogo gosudarstvennogo universiteta putej soobshcheniya [Damage and failures of rails on the West Siberian railway] // Bulletin of the Siberian State Transport University. 2015. №3. P. 13–16. [In Russian]
  14. Filippov M.A., Makarov A.V., Sheshukov O.Yu., Shevchenko O.I., Metelkin A.A. Iznos i iznosostojkie materialy : uchebnoe posobie dlya studentov vuza, obuchayushchihsya po napravleniyam podgotovki 22.03.01, 22.04.01 – Materialovedenie i tekhnologiya materialov; 22.03.02 – Metallurgiya [Wear and wear‒resistant materials: a textbook for university students studying in the areas of training 22.03.01, 22.04.01 – Materials Science and Technology of Materials; 22.03.02 – Metallurgy] / scientific editor M. A. Gervasyev. Ministry of Science and Higher Education of the Russian Federation; Ural Federal University named after the first President of Russia B. N. Yeltsin”, Nizhny Tagil. Technological Institute (branch). – Nizhny Tagil: NTI (branch) of UrFU. 2019. [In Russian]
  15. Chen J.H., Chen P.N., Lin C.M., Chang C.M., Chang Y.Y., Wu W. Microstructure and wear properties of multicomponent alloy cladding formed by gas tungsten arc welding (GTAW) // Surf. Coat. Technol. 2009. 203 (20–21). P.3231–3234.
  16. Sethi A.K. Studies on hard surfacing of structural steel by gas thermal spraying process // Mater. Today: Proceedings. 2020. 21. P.1436–1440.
  17. Furman E.L., Usoltsev E.A., Bakhteev I.S., Furman I.E., Shak A.V. Effect of laser heat treatment on structure and wear resistance of cobalt stellite // J. Phys.: Conf. Ser. 2019. 1396 (1). P. 12016.
  18. Momin A.G., Khatri B.C., Chaudhari M., Shah V.U., Valaki J. Parameters for cladding using plasma transfer arc welding—a critical // Mater. Today: Proceedings. 2023. 77. P. 614–618.
  19. Ulianitsky V.Y., Batraev I.S., Rybin D.K., Dudina D.V., Korchagin M.A., Gavrilov A.I., Ukhina A.V., Samodurova M.N., Trofimov E.A. FeCoNiCu alloys obtained by detonation spraying and spark plasma sintering of high‒energy ball‒milled powders // Journal of thermal spray technology. 2022. 31 (4). P.1067–1075.
  20. Ulianitsky V.Y., Rybin D.K., Dudina D.V., Ukhina A.V., Bokhonov B.B., Samodurova M.N., Trofimov E.A., Structure and composition of Fe–Co–Ni and Fe–Co–Ni–Cu coatings obtained by detonation spraying of powder mixtures // Materials Letters. 2021. 290. P. 129498.
  21. Gelchinsky B.R., Balyakin I.A., Yuryev A.A., Rempel A.A. Vysokoentropijnye splavy: issledovanie svojstv i perspektivy primeneniya v kachestve zashchitnyh pokrytij [High‒entropy alloys: research and prospects for application as protective coatings] // Chemical Research. 2022. 91 (6). RKR5023 [In Russian]
  22. Junjie G., Yan L., Wei W., Yongxin W., Zheng C. Chemical ordering enhancing mechanical properties of Nb25Ti35V5Zr35Alx refractory high‒entropy alloys. // Journal of Alloys and Compounds. 2025. 1017. 178990.
  23. Junjie G., Wenji L., Yan L., Shilong L., Yongxin W., Zheng C. A single‒phase Nb25Ti35V5Zr35 refractory high‒entropy alloy with excellent strength‒ductility synergy // Journal of Alloys and Compounds, 2024. 1006. 176290.
  24. Brodie J., Wang J., Couzinié J. P., Heczko M., Mazánová V., Mills M. J., Ghazisaeidi M. Stability of the B2 phase in refractory high entropy alloys containing aluminum // Acta Materialia. 2024. 1006. 119745.
  25. Hao W., Weiping C., Zhiqiang F., Chenliang C., Zhao T., Zhenfei J., Haiming W. Lightweight Ti‒Zr‒Nb‒Al‒V refractory high‒entropy alloys with superior strength‒ductility synergy and corrosion resistance // International Journal of Refractory Metals and Hard Materials. 2023. 116. 106331.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Crystallization rates and phase compositions in the temperature range of 1600–500 °C, obtained by the Sheila method

Жүктеу (413KB)

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».