Physicochemical properties of Na2SO4-CaSO4 melts
- Authors: Tanutrov I.N.1, Sviridova М.N.1
-
Affiliations:
- Institute of Metallurgy, Ural Branch of the RAS
- Issue: No 5 (2024)
- Pages: 519-528
- Section: Articles
- URL: https://journals.rcsi.science/0235-0106/article/view/271468
- DOI: https://doi.org/10.31857/S0235010624050066
- ID: 271468
Cite item
Abstract
The aim of the work was to study the properties of melts of the Na2SO4–CaSO4 system, which are best suited for practical application in metallurgy, for example, for improving the operation of industrial furnaces. In addition, information on the properties of this system is of interest for applied chemistry of molten salts, for example, for cleaning gases, metal and ceramic surfaces of structural elements. The properties of melts of binary sulfate systems, necessary for selecting application parameters, have not been studied sufficiently. The most important for practice are density, surface tension and dynamic viscosity. The work uses modern experimental research methods: maximum pressure in an argon bubble blown into the melt through a capillary to determine the density and surface tension, and the vibration method – for dynamic viscosity. The temperature and concentration ranges of measurements were 1050–1200°C and 0–60 mol. %. For the entire studied range of melt compositions, linear dependences of density and surface tension on temperature were obtained. Dynamic viscosity obeys an exponential dependence. As a result of statistical processing of the experimental data, general equations of polytherms of density, surface tension and viscosity were derived. Analysis of the experimental results showed that the values of density, surface tension and viscosity have deviations from additivity, which reflects a change in the structure of sodium sulfate – calcium sulfate melts with an increase in the concentration of CaSO4. Comparison of the obtained experimental data with those already known for binary carbonate melts indicated changes in the structure of the melts, in particular, the formation in the volume, in addition to the Na+ and Ca2+ cations and the SO42- anion, of complex anions [NaSO4]- predominantly on the surface and [Ca(SO4)]n- predominantly in the volume.
Full Text

About the authors
I. N. Tanutrov
Institute of Metallurgy, Ural Branch of the RAS
Author for correspondence.
Email: itanutrov@bk.ru
Russian Federation, Yekaterinburg
М. N. Sviridova
Institute of Metallurgy, Ural Branch of the RAS
Email: itanutrov@bk.ru
Russian Federation, Yekaterinburg
References
- Janz G.J., Allen C.B., Bansal N.P., Murphy R.M., Tomkins R. P. T. Physical properties data compilations relevant to energy storage. II. Molten salts: data on single and multi-component salt systems. NSRDS-NBS 61, Part II. Molten salts data center, Cogswell Laboratory Rensselaer Polytechnic Institute Troy, New York, 1979.
- Janz G. Molten salts data as reference standards for density, surface tension, viscosity, and electrical conductance // J. Phys. Chem. Ref. Data. 1980. 9. № 4. Р. 791–830.
- Krupnov L.V., Staryh R.V., Petrov A.F. Mekhanizm formirovaniya tugoplavkoj nastyli v pechah vzveshennoj plavki Nadezhdinskogo metallurgicheskogo zavoda [Mechanism of formation of refractory calcification in flash smelting furnaces of Nadezhda metallurgical plant] // Cvetnye metally. 2013. № 2. P. 46–51. [In Russian].
- Serebryanyj Ya.L. Elektroplavka medno-nikelevyh rud i koncentratov [Electric Smelting of Copper-Nickel Ores and Concentrates], 2nd ed. M.: Metallurgiya, 1974. [In Russian].
- Kaunov A.V., Timofeeva A.S. Issledovanie prichin i sposobov umen’sheniya obrazovaniya nastylej v shahtnoj pechi metallizacii [Study of causes and methods for reducing calcification formation in a shaft metallization furnace] // Uspekhi sovremennogo estestvoznaniya. 2011. № 3. P. 64–65. [In Russian].
- Fizicheskaya enciklopediya [Physical Encyclopedia]. M.: Bol’shaya rossijskaya enciklopediya, 1998. Vol. 5. [In Russian].
- Encyclopedia of Chemical Processing and Design: 69 Supplement. Chemical substances, components, reactions, process design. Molten sulfate mixture. New York, 2002.
- Freyer D., Voigt W., Kohnke K. The phase diagram of the system Na2SO4 – CaSO4 // Eur. J. Solid State Inorg. Chem. 1998. 35. P. 595–606.
- Zajkov Yu.P., Kovrov V.A., Kataev A.A., Suzdal’cev A.V., Holkina A.S., Pershin P.S. Elektrohimiya rasplavlennyh solej [Electrochemistry of molten salts]. Yekaterinburg: Izd-vo Ural. un-ta, 2014. [In Russian].
- Solov’ev A.N., Kaplun A.B. Vibracionnyj metod izmereniya vyazkosti zhidkostej [Vibration method for measuring liquid viscosity]. Novosibirsk: Nauka, 1970. [In Russian].
- Ukshe E.A. Stroenie rasplavlennyh solej [Structure of molten salts]. M.: Mir, 1966. [In Russian].
- Smirnov M.V., Stepanov V.P. Poverhnostnaya aktivnost’ komponentov ionnyh rasplavov Sb. Fizicheskaya himiya. Sovremennye problem [Surface Activity of components of ionic melts. Collection of physical chemistry. modern problems]. M.: Himiya, 1985. [In Russian].
- Katyshev S.F., Artemov V.V., Desyatnik V.N. Plotnost’ i poverhnostnoe natyazhenie rasplavov ftorida cirkoniya s ftoridami shchelochnyh metallov [Density and surface tension of zirconium fluoride melts with alkali metal fluorides] // Rasplavy. 1988. 2. № 6. P. 102–104. [In Russian].
- Darienko S.E., Katyshev S.F., Chervinskij Yu.F. Plotnost’ rasplavov sistem KF-KCl, KF-ZrF4, KF-H£F4, KCl-ZrF4, KCl-HfF4 [Density of melts of the KF-KCl, KF-ZrF4, KF-HfF4, KCl-ZrF4, KCl-HfF4 systems] // Rasplavy. 1990. 4. № 1. P. 103–106. [In Russian].
- Hohryakov A.A., Samojlova M.A., Ryabov V.V., Vedmid’ L.B. Effektivnaya vyazkost’ i temperatura steklovaniya rasplavov Cs2O–B2O3 [Effective viscosity and glass transition temperature of Cs2O–B2O3 melts] // Rasplavy. 2023. № 6. C. 614–623. [In Russian].
- Aqra F. Surface tension of molten metal halide salts // J. of Molecular Liquids. 2014. 200. P. 120–121.
Supplementary files
