SPECTRAL ANALYSIS IN THE EVALUATION OF THE ELECTROCHEMICAL BEHAVIOR OF HIGH-ENTROPY GdTbDyHoSc AND GdTbDyHoY ALLOYS

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The corrosion behavior of disordered systems, such as high-entropy alloys, exhibit a stochastic random process. To accurately predict and analyze the behavior of these systems in service environments, it is necessary to employ new computational and experimental methods alongside classical electrochemical methods. In this study, we highlighted the effectiveness of using fast Fourier transform and wavelet analysis to assess the corrosion behavior of stochastic systems, using the example of equimolar rare-earth alloys GdTbDyHoSc and GdTbDyHoY. To evaluate the corrosion behavior, we measured the time series of potential fluctuations for the studied samples in a 0.01 M NaCl solution over a 12-hour period, at current densities ranging from 0.2 to 0.5 mA/cm2. Applying the fast Fourier transform method to analyze the obtained time series, we observed that the angular coefficient of the slope of the logarithm of the power spectral density logarithm to the logarithm of frequency increased with higher current density. Specifically, for the GdTbDyHoSc alloy, the coefficient increased from –1.46 to –1.35, indicating the prevalence of general corrosion dissolution. In contrast, for the GdTbDyHoY alloy, the coefficient increased from –1.93 to –1.77, suggesting the dominance of localized dissolution. Furthermore, we utilized wavelet analysis to process the time series data for both alloys at current densities ranging from 0.2 to 0.5 mA/cm2. This analysis allowed us to plot time series scalograms, which visually illustrated the intensity of the corrosion process on the surface of the investigated alloys. From the scalograms, we calculated the values of the global energy spectra distributed over frequency ranges, as well as the values of the total energy of the investigated systems. Interestingly, the GdTbDyHoY alloy exhibited higher total energy values compared to the GdTbDyHoSc alloy. Specifically, the total energy for the GdTbDyHoY alloy increased from 0.97 to 2.03 kV2 as the current density increased from 0.2 to 0.5 mA/cm2, respectively. For the GdTbDyHoSc alloy, the total energy increased from 0.50 to 0.84 kV2. In conclusion, the application of fast Fourier transform and wavelet analysis methods proved to be effective tools for gaining a deep understanding of the corrosion behavior of locally disordered chemical systems, such as the high-entropy alloys of GdTbDyHoSc and GdTbDyHoY composition.

Авторлар туралы

M. Skrylnik

Institute of Metallurgy of the Ural Branch of RAS

Хат алмасуға жауапты Автор.
Email: mariyaskrylnik@mail.ru
Russia, Yekaterinburg

P. Zaitceva

Institute of Metallurgy of the Ural Branch of RAS

Email: mariyaskrylnik@mail.ru
Russia, Yekaterinburg

K. Shunyaev

Institute of Metallurgy of the Ural Branch of RAS

Email: mariyaskrylnik@mail.ru
Russia, Yekaterinburg

A. Rempel

Institute of Metallurgy of the Ural Branch of RAS

Email: mariyaskrylnik@mail.ru
Russia, Yekaterinburg

Әдебиет тізімі

  1. Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H., Chang, S.Y. // Adv. Eng. Mater. 2004. 6. P. 299–303. https://doi.org/10.1002/adem.200300567
  2. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. // Mater. Sci. Eng. A. 2004. 375–377. P. 213–218. https://doi.org/10.1016/j.msea.2003.10.257
  3. Yeh J.W., Lin S.J., Chin T.S., Gan J.Y., Chen S.K., Shun T.T., Tsau C.H., Chou S.Y. // Metall. Mater. Trans. A. 2004. 35. P. 2533–2536. https://doi.org/10.1007/s11661-006-0234-4
  4. Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. // Prog. Mater. Sci. 2014. 61. P. 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001
  5. Gao M.C. // Cham: Springer. 2016. P. 369–398. https://doi.org/10.1007/978-3-319-27013-5_11
  6. Chen Y.Y., Duval T., Hung U.D., Yeh J.W., Shih H.C. // Corros. Sci. 2005. 47. P. 2257–2279. https://doi.org/10.1016/j.corsci.2004.11.008
  7. Shi Y., Yang B., Liaw P.K. // Metals. 2017. 7. № 2. Р. 43. https://doi.org/10.3390/met7020043
  8. Qiu Y., Thomas S., Gibson M.A., Fraser H.L., Birbilis N. // npj Materials Degradation. 2017. 1. Р. 15. https://doi.org/10.1038/s41529-017-0009-y
  9. Uporov S.A., Estemirova S.Kh., Sterkhov E.V., Zaitceva P.V., Skrylnik M.Yu., Shunyaev K.Yu., Rempel А.А. // Rasplavy. 2022. № 5. Р. 443–453. [In Russian]. https://doi.org/10.31857/S0235010622050097
  10. Efremov A.P. Himicheskoe soprotivlenie materialov: ucheb. Posobie [Chemical resistance of materials: study guide]. М.: Publishing House of the Russian State University of Oil and Gas named I.M. Gubkin, 2004. [In Russian].
  11. Jekilik V.V. Teorija korrozii i zashhity metallov. Metodicheskoe posobie po speckursu [Theory of corrosion and protection of metals. Methodological guide for a special course]. Rastov-na-Donu: Izd-vo RGU, 2004. [In Russian].
  12. Fukuda T., Mizuno T. // Corros. Sci. 1996. 38. № 7. P. 1085–1091. https://doi.org/10.1016/0010-938X(96)00003-0
  13. He L., Jiang Y., Guo Y., Wu X., Li J. // Corrosion Engineering, Science and Technology. 2016. 51. P. 187–194. https://doi.org/10.1179/1743278215Y.0000000048
  14. Jarushkina N.G., Afanas’eva T.V., Perfil’eva I.G. Intellektual’nyj analiz vre-mennyh rjadov: uchebnoe posobie [Time Series Mining: A Tutorial]. Ul’janovsk: Izd-vo UlGTU, 2010. [In Russian].
  15. Dzhenkins D., Vatts D. Spektral’nyj analiz i ego prilozhenie [Spectral analysis and its application]. М.: Mir, 1978. [In Russian].
  16. D’jakonov V., Abramenkova I. MATLAB. Obrabotka signalov i izobrazhenij. Special’nyj spravochnik [MATLAB. Processing of signals and images. Special guide.]. SPb.: Piter, 2002. [In Russian].
  17. Mansfeld F., Xiao H. // J. Electrochem. Soc. 1993. 140. № 8. Р. 2205. https://doi.org/10.1149/1.2220796
  18. Legat A., Zevnik C. // Corros. Sci. 1993. 35. P. 1661–1666. https://doi.org/10.1016/0010-938X(93)90396-X
  19. Tashlinskij A.G., Minkina G.L. Spektral’nyj analiz signalov i issledovanie svojstv preobrazovanija Fur’e: metodicheskie ukazanija k vypolneniju laborator-nyh rabot po kursu Vvedenie v teoriju signalov [Spectral analysis of signals and the study of the properties of the Fourier transform: guidelines for performing laboratory work on the course Introduction to the theory of signals]. Ul’janovsk: Izd-vo UlGTU, 2007. [In Russian].
  20. Zhang T., Shao Y., Meng G., Wang F. // Electrochim. Acta. 2007. 53. P. 561–568. https://doi.org/10.1016/j.electacta.2007.07.014
  21. Cheng Y.F., Luo J.L., Wilmott M. // Electrochim. Acta. 2000. 45. P. 1763–1771. https://doi.org/10.1016/S0013-4686(99)00406-5
  22. Kovac J., Alaux C., Marrow T.J., Govekar E., Legat A. // Corros. Sci. 2010. 52. P. 2015–2025. https://doi.org/10.1016/j.corsci.2010.02.035
  23. Vorob’ev V.I., Gribunin V.G. Teorija i praktika vejvlet-preobrazovanija [Theory and practice of wavelet transform]. SPb.: VUS, 1999. [In Russian].
  24. Planinšič P., Petek A. Wavelets in electrochemical noise analysis, 2007.
  25. Astaf’eva N.M. // Uspehi fizicheskih nauk. 1996. 166. № 11. Р. 1145–1170. [In Russian]. https://doi.org/10.3367/UFNr.0166.199611a.1145
  26. Vityazev V.V. Veyvlet-analiz vremennykh ryadov: Ucheb. Posobiye [Wavelet time series analysis: Tutorial]. SPb.: Izd-vo SPb. universitet 2001. [In Russian].
  27. Wang C., Wu L., Xue F., Ma R., Etim I.N., Hao X., Dong J., Ke W. // Journal of Materials Science & Technology. 2018. 34. № 10. P. 1876–1884. https://doi.org/10.1016/j.jmst.2018.01.015

Қосымша файлдар


© М.Ю. Скрыльник, П.В. Зайцева, К.Ю. Шуняев, А.А. Ремпель, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».