ELECTROREFINING OF URANIUM ALLOYS CONTAINING PALLADIUM AND NEODYMIUM IN 3LiCl–2KCl–UCl3 MELTS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The technology of pyrochemical processing of mixed nitride uranium-plutonium spent fuel, realizable at the experimental and demonstration energy complex of the site of the Siberian Chemical Plant, includes several operations with the ultimate goal of isolating the target fission products. It’s planned to use the electrofining of the products of the previous stage, metallized spent nuclear fuel, аs the penultimate stage of processing. It’s necessary to determine the processes and technological modes of electrolytic refining of alloys modeling the product of this stage of the processing module to implement electrolytic refining. This paper presents the results of electrofining of model alloys (simulating the raw materials of the stage of electrofining processing) on an enlarged laboratory electrolyzer. The initial parameters of uranium refining processes in melts based on 3LiCl–2KCl–UCl3 were determined earlier. The basic parameters of refining were the use of electrolyte 3LiCl–2KCl–UCl3 (10.1 wt % UCl3) and conducting experiments at 550°C. Uranium alloys containing palladium and neodymium were prepared by direct fusion of uranium metal, PdAP-1 grade palladium metal powders and neodymium metal (99.99%) in a medium of high-purity argon (99.998%). The data obtained showed that at a temperature of 550°C, cathode precipitates are typical dendritic forms of alpha-uranium in rhombic syngony with a tendency to needle formation with an increase in cathode current density. An increase in the company time and cathode current density leads to a decrease in the current output due to short-circuiting of the electrodes with cathode sediment needles or metal shedding from the cathode. The modes of the cathode process have been experimentally refined as a result of electrofining. When electrofining alloys U–Pd(1.59 wt %), U–Pd(1.62 wt %), U–Pd(1.54 wt %), U–Pd(1.58 wt %)–Nd(5.64 wt %), U–Pd(1.84 wt %)–Nd(6.49 wt %), U–Pd(1.79 wt %)–Nd(6.54 wt %), uranium cathode precipitates were obtained, which were subjected to chemical analysis, which showed the high purity of the resulting metallic uranium, as well as the absence of metallic palladium and molybdenum in it. The palladium purification coefficient exceeds 5000, the neodymium purification coefficient exceeds 1000, which meets the requirements for purification from fission products at this stage of pyrochemical processing of spent fuel. Palladium accumulates in anode slime, while the bulk of neodymium passes into the molten electrolyte.

About the authors

D. I. Nikitin

Ural Federal University

Author for correspondence.
Email: house.freshone@ya.ru
Russia, Yekaterinburg

I. B. Polovov

Ural Federal University

Email: house.freshone@ya.ru
Russia, Yekaterinburg

O. I. Rebrin

Ural Federal University

Email: house.freshone@ya.ru
Russia, Yekaterinburg

References

  1. Nawada H.P., Fukuda K. Role of pyro-chemical processes in advanced fuel cycles // J. Physics and Chemistry of Solids. 2005. 66. № 2–4. P. 647–651.
  2. Driggs F.H., Lilliendahl W.C. Preparation of metal powders by electrolysis of fused salts: I–Ductile Uranium // Industrial and Engineering Chemistry. 1930. 22. № 5. P. 516–519.
  3. Kolodney M. Production of plutonium by electrolysis // Los Alamos National Laboratory Report. 1944. LA-148.
  4. Kolodney M. Preparation of the first electrolytic plutonium and of uranium from fused chlorides // J. Electrochemical Society. 1982. 129. P. 2438.
  5. Marzano C., Noland R.A. The electrolytic refining of uranium // Argonne National Laboratory Report. 1953. ANL-5102.
  6. Niedrach L.W., Glamm A.C. Uranium purification by electrorefining // J. Electrochemical Society. 1956. 103. № 9. P. 521–528.
  7. Boisdie G., Chauvin G., Coriou H., Hure J. Contribution a la connaissance du mecanisme de l’electroraffinage de l’uranium en bains de sels fondus // Electrochimica Acta. 1961. 5. № 1–2. P. 54–71.
  8. Chauvin G., Coriou H., Simenauer A., Phenomene de concentration du fer au voisinage de la cathode au cours de l’electroraffinage de l’uranium en bains de sels fondus // Electrochimica Acta. 1963. 8. № 5. P. 323–332.
  9. Chauvin G., Coriou H., Jabot P., Laroche A. Production d’uranium de haute purete par electroraffinage en bains de sels fondus // J. Nuclear Materials. 1964. 11. № 2. P. 183–192.
  10. Kang Y.H., Lee J.H., Hwang S.C., Shim J.B., Kim E.H., Park S.W. Electrodeposition characteristics of uranium by using a graphite cathode // Carbon. 2006. 44. P. 3142.
  11. Lee J.H., Kang Y.H., Hwang S.C., Shim J.B., Kim E.H., Park S.W. Application of graphite as a cathode material for electrorefining of uranium // Nuclear Technology. 2008. 162.
  12. Nikitin D.I., Zolotarev D.A., Mukhametdyanov A.D., Volkovich V.A., Polovov I.B. Uranium electro refining in 3LiCl–2KCl based melts // ECS Transactions. 2020. 98. № 10. P. 443–451.
  13. Tomczuk Z., Ackerman J.P., Wolson R.D., Miller W.E. Uranium transport to solid electrodes in pyrochemical reprocessing of nuclear fuel // J. Electrochemical Society. 1992. 139. № 12. P. 3523–3528.
  14. Willit J.L., Miller W.E., Battles J.E. Electrorefining of uranium and plutonium – A literature review // J. Nuclear Materials. 1992. 195. № 3. P. 229–249.
  15. Kuratal M., Yahagi N., Kitawaki S., Nakayoshi A., Fukushima M. Sequential electrolysis of U–Pu alloy containing a small amount of Am to recover U- and U–Pu–Am products // J. Nuclear Science and Technology. 2009. 46. № 2. P. 175–183.
  16. Kitawaki S., Shinozaki T., Fukushima M., Usami T., Yahagi N., Kurata M. Recovery of U–Pu alloy from MOX using a pyroprocess series // J. Nuclear Materials. 2007. 162. № 2. P. 118–123.
  17. Jang J., Kim T., Kim G.-Y., Yoon D., Lee S. Uranium recovery via electrochemical deposition with a liquid zinc cathode followed by electrochemical oxidation of rare earth metals // J. Nuclear Materials. 2019. 520. P. 245–251.
  18. Maltsev D.S., Volkovich V.A., Vasin D.B., Vladykin E.N. An electrochemical study of uranium behaviour in LiCl–KCl–CsCl eutectic melt // J. Nuclear Materials. 2015. 467. P. 956–963.
  19. Kesikopulos V.A., Potapov A.M., Dedyukhin A.Ye., Zaykov Yu.P. Izgotovleniye intermetallida UPd3 i issledovaniye yego termodinamicheskikh kharakteristik [Fabrication of UPd3 intermetallic compound and study of its thermodynamic characteristics] // Sb. tr. seminara “Elektrokhimiya v raspredelennoy i atomnoy energetike”. Nal’chik. 2022. Р. 224–226. [In Russian].

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (584KB)
3.

Download (537KB)
4.

Download (804KB)
5.

Download (373KB)
6.

Download (1MB)
7.

Download (1MB)
8.

Download (1MB)
9.

Download (735KB)

Copyright (c) 2023 Д.И. Никитин, И.Б. Половов, О.И. Ребрин

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».