Проблемы диагностики дисфункций обонятельного анализатора лабораторных животных на основе поведенческих и электрофизиологических методов исследования

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Нарушение обоняния (снижение остроты, нарушение адекватной идентификации запахов) снижает качество жизни пациентов и может быть симптомом широкого спектра патологий организма, в частности нейродегенеративных процессов в отделах головного мозга. Количественное измерение остроты обоняния необходимо для диагностики обонятельных дисфункций, отслеживания динамики обоняния после лечения или хирургического вмешательства.

Особенно актуальной в настоящий момент видится проблема поиска оптимальных методов анализа обонятельных порогов на животных моделях заболеваний человека, сопровождающихся аносмией, и сопоставление их с таковыми. Это необходимо для подбора валидной животной модели с целью разработки новых лекарственных средств и методов терапии широкого спектра патологий.

В обзоре проведен анализ публикаций, посвященных исследованию заболеваний, сопровождающихся аносмией или гипосмией, их животным моделям, методам оценки обонятельной функции. Разобраны модели для коронавирусной инфекции COVID-19, болезней Альцгеймера, Паркинсона, диабета 1 и 2 типов, синдрома Кальмана и Синдрома Барде–Бидля, для которых отмечены нарушения обонятельной функции и/или дефекты отделов обонятельной системы.

В обзоре отмечается недостаточность данных об измерении обонятельных порогов у модельных животных.

Полный текст

Доступ закрыт

Об авторах

А. В. Горская

Институт эволюционной физиологии и биохимии имени И. М. Сеченова РАН

Email: dvasilyev@bk.ru
Россия, 194223, Санкт-Петербург, ул. Тореза 44

Д. С. Васильев

1Институт эволюционной физиологии и биохимии имени И. М. Сеченова РАН

Автор, ответственный за переписку.
Email: dvasilyev@bk.ru
Россия, 194223, Санкт-Петербург, ул. Тореза 44

Список литературы

  1. Гвазава И. Г., Каримова М. В., Васильев А. В., Воротеляк Е. А. Сахарный диабет 2 типа: особенности патогенеза и экспериментальные модели на грызунах. Acta Naturae (русскоязычная версия). 2022. Т. 14(3). С. 57—68. https://doi.org/10.32607/actanaturae.11751
  2. Дубровская Н. М., Васильев Д. С., Туманова Н. Л., Алексеева О. С., Наливаева Н. Н. Пренатальная гипоксия нарушает обонятельную функцию в постнатальном онтогенезе крыс. Журнал высшей нервной деятельности им. И. П. Павлова. 2021. Т. 71(3). С. 415—427. https://doi.org/10.31857/S0044467721030035
  3. Иптышев А. М., Горина Я. В., Лопатина О. Л., Комлева Ю. К., Салмина А. Б. Экспериментальные модели болезни Альцгеймера: преимущества и недостатки. Сибирское медицинское обозрение. 2016. Т. 4. С. 5—21.
  4. Морозова С. В., Савватеева Д. М., Петрова Е. И. Обонятельные расстройства у пациентов с нейродегенеративными заболеваниями. Неврологический журнал. 2014. Т. 19(1). С. 4—8.
  5. Кирой В. Н., Косенко П. О., Шапошников П. Д., Асланян Е. В., Саевский А. И. Изменение спектральных характеристик и уровня когерентности фокальной активности обонятельной луковицы крысы в динамике ксилазин-тилетаминзолазепамового наркоза. Сенсорные системы. 2023. Т. 37(1). C. 65—77. https://doi.org/ 10.31857/S0235009223010043
  6. Носуля Е. В., Ким И. А., Борисенко Г. Н., Черных Н. М., Шпакова Е. А. Обонятельная дисфункция в практике оториноларинголога: анализ симптомов при различных патологических состояниях и у беременных. Вестник оториноларингологии. 2013. Т. 78(4). С. 72—77.
  7. Пашкевич С. Г., Еременко Ю. Е., Миронова Г. П., Гладкова Ж. А., Андрианова Т. Д., Токальчик Д. П., Рябцева С. Н., Деревянко И. А., Стукач Ю. П., Кульчицкий В. А. Экспериментальная модель аспириновой триады. Оториноларингология. Восточная Европа. 2015. Т. 3(20). С. 58—62.
  8. Тиганов А. С., Снежневский А. В., Орловская Д. Д. Руководство по психиатрии Т. 1. М.: Медицина, 1999. 712 с.
  9. Abrams K. L., Ward D. A., Sabiniewicz A., Hummel T. Olfaction evaluation in dogs with sudden acquired retinal degeneration syndrome. Veterinary Ophthalmology. 2023. Epub ahead of print. PMID: 37399129. https://doi.org/ 10.1111/vop.13121
  10. Andrea X. P., Joceline L. M. Jose O. F. Jose P. O. Human Nasal Epithelium Damage as the Probable Mechanism Involved in the Development of Post-COVID-19 Parosmia. Indian Journal of Otolaryngology and Head & Neck Surgery. 2023. V. 75(1). P. 458—464. https://doi.org/10.1007/s12070—023—03559-x
  11. Aragao M. F.V.V., Leal M. C., Filho O. Q.C., Fonseca T. M., Aragao L. V., Leao M. R.V.C., Valenca M. A., Andrade P. H.P., Aragao J. P.V., Neto S. S.C., Valenca M. M. Comparative study — the impact and profile of COVID-19 patients who are indicated for neuroimaging: vascular phenomena are been found in the brain and olfactory bulbs. Medrxiv. 2021. P. 2020.12.28.20248957. https://doi.org/10.1101/2020.12.28.20248957
  12. Arbuckle E. P., Smith G. D., Gomez M. C., Lugo J. N. Testing for odor discrimination and habituation in mice. Journal of Visualized Experiments. 2015. No. 9. P. e52615. https://doi.org/ 10.3791/52615
  13. Aydin S., Aksoy A., Aydin S., Kalayci M., Yilmaz M., Kuloglu T., Citil C., Catak Z. Today’s and yesterday’s of pathophysiology: biochemistry of metabolic syndrome and animal models. Nutrition. 2014. V. 30(1). P. 1—9. https://doi.org/ 10.1016/j.nut.2013.05.013
  14. Baum M. J. Contribution of pheromones processed by the main olfactory system to mate recognition in female mammals. Frontiers in neuroanatomy. 2012. V. 6. P. 20. https://doi.org/ 10.3389/fnana.2012.00020
  15. Beshel J., Kopell N., Kay L. M. Olfactory bulb gamma oscillations are enhanced with task demands. Journal of Neuroscience. 2007. V. 27(31). P. 8358—8365. https://doi.org/10.1523/JNEUROSCI.1199—07.2007
  16. Boesveldt S., Postma E. M., Boak D., Welge-Luessen A., Schöpf V., Mainland J. D., Martens J., Ngai J., Duffy V. B. Anosmia — a clinical review. Chemical senses. 2017. V. 42(7). P. 513—523. https://doi.org/10.1093/chemse/bjx025
  17. Borghammer P., Just M. K., Horsager J., Skjærbæk C., Raunio A., Kok E. H., Savola S., Murayama S., Saito Y., Myllykangas L., Van Den Berge N. A postmortem study suggests a revision of the dual-hit hypothesis of Parkinson’s disease. NPJ Parkinson’s Disease. 2022. V. 8(1). P. 166. https://doi.org/10.1038/s41531—022—00436—2
  18. Braak H., Del Tredici K., Rüb U., de Vos R. A., Jansen Steur E. N., Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of aging. 2003. V. 24(2). P. 197—211. https://doi.org/10.1016/S0197—4580(02)00065—9
  19. Braak H., Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiology of aging. 1997. V. 18(4). P. 351—357. https://doi.org/10.1016/S0197—4580(97)00056—0
  20. Braak H., Braak E. Neuropathological stageing of Alzheimer-related changes. Acta neuropathologica. 1991. V. 82(4). P. 239—259. https://doi.org/10.1007/BF00308809
  21. Braak H., Braak E. The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neuroscience research. 1992. V. 15(1—2). P. 6—31. https://doi.org/10.1016/0168—0102(92)90014—4
  22. Bryche B., St Albin A., Murri S., Lacôte S., Pulido C., Ar Gouilh M., Lesellier S., Servat A., Wasniewski M., Picard-Meyer E., Monchatre-Leroy E., Volmer R., Rampin O., Le Goffic R., Marianneau P., Meunier N. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain, behavior, and immunity. 2020. V. 89. P. 579—586. https://doi.org/10.1016/j.bbi.2020.06.032
  23. Butowt R., Bilinska K., von Bartheld C. S. Olfactory dysfunction in COVID-19: New insights into the underlying mechanisms. Trends in Neurosciences. 2023. V. 46(1). P. 75—90. https://doi.org/10.1016/j.tins.2022.11.003
  24. Cave J. W., Fujiwara N., Weibman A. R., Baker H. Cytoarchitectural changes in the olfactory bulb of Parkinson’s disease patients. NPJ Parkinson’s disease. 2016. V. 2(1). P. 1—3. https://doi.org/10.1038/npjparkd.2016.11
  25. Christen-Zaech S., Kraftsik R., Pillevuit O., Kiraly M., Martins R., Khalili K., Miklossy J. Early olfactory involvement in Alzheimer’s disease. Canadian Journal of Neurological Sciences. 2003. V. 30(1). P. 20—25. https://doi.org/10.1017/s0317167100002389
  26. Chu H., Chan J. F.W., Yuen K. Y. Animal models in SARS-CoV-2 research. Nature Methods. 2022. V. 19(4). P. 392—394. https://doi.org/10.1038/s41592—022—01447-w
  27. Cisneros-Larios B., Elias C. F. Sex differences in the coexpression of prokineticin receptor 2 and gonadal steroids receptors in mice. Frontiers in Neuroanatomy. 2023. V. 16. P. 1057727. https://doi.org/10.3389/fnana.2022.1057727
  28. Claire M., Christine, F. N., Terry L. J., Left hippocampal volume loss in Alzheimer’s disease is reflected in performance on odor identification: a structural MRI study. Journal of the International Neuropsychological Society. 2003. V. 9(3). P. 459—471. https://doi.org/10.1017/S1355617703930116
  29. Cooper K. W., Brann D. H., Farruggia M. C., Bhutani S., Pellegrino R., Tsukahara T., Weinreb C., Joseph P. V., Larson E. D., Parma V., Albers M. W., Barlow L. A., Datta S. R., Di Pizio A. COVID-19 and the chemical senses: supporting players take center stage. Neuron. 2020. V. 107 (2). P. 219—233. https://doi.org/10.1016/j.neuron.2020.06.032
  30. Coronas-Samano G., Ivanova A. V., Verhagen J. V. The habituation/cross-habituation test revisited: guidance from sniffing and video tracking. Neural plasticity. 2016. V. 2016. https://doi.org/10.1155/2016/9131284
  31. David P., Malkova A. Anosmia in COVID-19 and post-COVID syndrome Autoimmunity, COVID-19, Post-COVID19 Syndrome and COVID-19 Vaccination. Academic Press. 2023. P. 487—494. https://doi.org/10.1016/B978—0—443—18566—3.00010—4
  32. Davidson T. M., Murphy C., Jalowayski A. A. Smell impairment: can it be reversed? Postgraduate medicine. 1995. V. 98(1). P. 107—118. https://doi.org/10.1080/00325481.1995.11946020
  33. Davis R. E., Swiderski R. E., Rahmouni K., Nishimura D. Y., Mullins R. F., Agassandian K., Philp A. R., Searby C. C., Andrews M. P., Thompson S., Berry C. J., Thedens D. R., Yang B., Weiss R. M., Cassell M. D., Stone E. M., Sheffield V. C. A knockin mouse model of the Bardet–Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity. Proceedings of the National Academy of Sciences. 2007. V. 104(49). P. 19422—19427. https://doi.org/10.1073/pnas.0708571104
  34. Deer J., Koska J., Ozias M., Reaven P. Dietary models of insulin resistance. Metabolism. 2015. V. 64(2). P. 163—171. https://doi.org/10.1016/j.metabol.2014.08.013
  35. Del Tredici K., Rüb U., De Vos R. A., Bohl J. R., Braak H. Where does Parkinson disease pathology begin in the brain? Journal of Neuropathology & Experimental Neurology. 2002. V. 61(5). P. 413—426. https://doi.org/10.1093/jnen/61.5.413
  36. Di Lullo A. M., Iacotucci P., Comegna M., Amato F., Dolce P., Castaldo G., Cantone E., Carnovale V., Iengo M. Cystic fibrosis: the sense of smell. American Journal of Rhinology & Allergy. 2020. V. 34(1). P. 35—42. https://doi.org/10.1177/1945892419870450
  37. Di Schiavi E., Andrenacci D. Invertebrate models of kallmann syndrome: molecular pathogenesis and new disease genes. Current genomics. 2013. V. 14(1). P. 2—10. https://doi.org/10.2174/138920213804999174
  38. Doorduijn A. S., de van der Schueren M. A.E., van de Rest O., de Leeuw F. A., Fieldhouse J. L.P., Kester M. I., Teunissen C. E., Scheltens P., van der Flier W. M., Visser M., Boesveldt S. Olfactory and gustatory functioning and food preferences of patients with Alzheimer’s disease and mild cognitive impairment compared to controls: the NUDAD project. Journal of Neurology. 2020. V. 267(1). P. 144—152. https://doi.org/10.1007/s00415—019—09561—0
  39. Dotan A., Muller S., Kanduc D., David P., Halpert G., Shoenfeld Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmunity reviews. 2021. V. 20(4). P. 102792. https://doi.org/10.1016/j.autrev.2021.102792
  40. Doty R. L. Office procedures for quantitative assessment of olfactory function. American journal of rhinology. 2007. V. 21(4). P. 460—473. https://doi.org/10.2500/ajr.2007.21.3043
  41. Dutta D., Karthik K., Holla V. V., Kamble N., Yadav R., Pal P. K., Mahale R. R. Olfactory bulb volume, olfactory sulcus depth in Parkinson’s disease, atypical parkinsonism. Movement Disorders Clinical Practice. 2023. V. 10(5). P. 794—801. https://doi.org/10.1002/mdc3.13733
  42. Eichers E. R., Paylor R., Lewis R. A., Bi W., Lin X., Meehan T. P., Stockton D. W., Justice M. J., Lupski J. R. Phenotypic characterization of Bbs4 null mice reveals age-dependent penetrance and variable expressivity. Human genetics. 2006. V. 120. P. 211—226. https://doi.org/10.1007/s00439—006—0197-y
  43. Ellrichmann G., Blusch A., Fatoba O., Brunner J., Reick C., Hayardeny L., Hayden M., Sehr D., Winklhofer K. F., Saft C., Gold R. Laquinimod treatment in the R6/2 mouse model. Scientific reports. 2017. V. 7(1). P. 4947. https://doi.org/10.1038/s41598—017—04990—1
  44. Falkowski B., Chudziński M., Jakubowska E., Duda-Sobczak A. Association of olfactory function with the intensity of self-reported physical activity in adults with type 1 diabetes. Pol Arch Intern Med. 2017. V. 127(7—8). P. 476—480. https://doi.org/10.20452/pamw.4073
  45. Fan C., Wu Y., Rui X., Yang Y., Ling C., Liu S., Liu S., Wang Y. Animal models for COVID-19: advances, gaps and perspectives. Signal Transduction and Targeted Therapy. 2022. V. 7(1). P. 220. https://doi.org/10.1038/s41392—022—01087—8
  46. Fiani B., Quadri S. A., Cathel A., Farooqui M., Ramachandran A., Siddiqi I., Ghanchi H., Zafar A., Berman B. W., Siddiqi J. Esthesioneuroblastoma: a comprehensive review of diagnosis, management, and current treatment options. World neurosurgery. 2019. V. 126. P. 194—211. https://doi.org/10.1016/j.wneu.2019.03.014
  47. Flores-Cuadrado A., Saiz-Sanchez D., Mohedano-Moriano A., Lamas-Cenjor E., Leon-Olmo V., Martinez-Marcos A., Ubeda-Bañon I. Astrogliosis and sexually dimorphic neurodegeneration and microgliosis in the olfactory bulb in Parkinson’s disease. NPJ Parkinson’s Disease. 2021. V. 7(1). P. 11. https://doi.org/10.1038/s41531—020—00154—7
  48. Franks K. H., Chuah M. I., King A. E., Vickers J. C. Connectivity of pathology: the olfactory system as a model for network-driven mechanisms of Alzheimer’s disease pathogenesis. Frontiers in aging neuroscience. 2015. V. 7. P. 234. https://doi.org/10.3389/fnagi.2015.00234
  49. Fujita M., Ho G., Takamatsu Y., Wada R., Ikeda K., Hashimoto M. Possible Role of Amyloidogenic Evolvability in Dementia with Lewy Bodies: Insights from Transgenic Mice Expressing P123H -Synuclein. International Journal of Molecular Sciences. 2020. V. 21(8). P. 2849. https://doi.org/10.3390/ijms21082849
  50. Gawenis L. R., Hodges C. A., McHugh D.R., Valerio D. M., Miron A., Cotton C. U., Liu J., Walker N. M., Strubberg A. M., Gillen A. E., Mutolo M. J., Kotzamanis G., Bosch J., Harris A., Drumm M. L., Clarke L. L. A BAC transgene expressing human CFTR under control of its regulatory elements rescues CFTR knockout mice. Scientific Reports. 2019. V. 9(1). P. 11828. https://doi.org/10.1038/s41598—019—48105—4
  51. Gascón C., Santaolalla F., Martínez A., Sánchez Del Rey A. Usefulness of the BAST-24 smell and taste test in the study of diabetic patients: a new approach to the determination of renal function. Acta oto-laryngologica. 2013. V. 133(4). P. 400—404. https://doi.org/10.3109/00016489.2012.746471
  52. Gaudel F., Stephan D., Landel V., Sicard G., Féron F., Guiraudie-Capraz G. Expression of the Cerebral Olfactory Receptors Olfr110/111 and Olfr544 Is Altered During Aging and in Alzheimer’s Disease-Like Mice. Mol Neurobiol. 2018. V. 56. P. 2057—2072. https://doi.org/10.1007/s12035—018—1196—4
  53. Gheusi G. Behavioral Methods in Olfactory Research. Encyclopedia of Neuroscience. Berlin, Heidelberg. Springer, 2008. 4398 p. https://doi.org/10.1007/978—3—540—29678—2_590
  54. Gouveri E., Katotomichelakis M., Gouveris H., Danielides V., Maltezos E., Papanas N. Olfactory dysfunction in type 2 diabetes mellitus: an additional manifestation of microvascular disease? Angiology. 2014. V. 65(10). P. 869—876. https://doi.org/10.1177/0003319714520956
  55. Gruber A. D., Firsching T. C., Trimpert J., Dietert K. Hamster models of COVID-19 pneumonia reviewed: How human can they be? Veterinary Pathology. 2022. V. 59(4). P. 528—545. https://doi.org/10.1177/03009858211057197
  56. Guilbault C., Saeed Z., Downey G. P., Radzioch D. Cystic fibrosis mouse models. American journal of respiratory cell and molecular biology. 2007. V. 36(1). P. 1—7. https://doi.org/10.1165/rcmb.2006—0184TR
  57. Hardy J., Selkoe D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002. V. 297(5580). P. 353—356. https://doi.org/10.1126/science.1072994
  58. Howe de la Torre S., Parlatini V., Cortese S. Long-term central nervous system (CNS) consequences of COVID-19 in children. Expert Review of Neurotherapeutics. 2023. V. 23(8). P. 703—720. https://doi.org/10.1080/14737175.2023.2239500
  59. Hubbard P. S., Esiri M. M., Reading M., McShane R., Nagy Z. Alpha‐synuclein pathology in the olfactory pathways of dementia patients. Journal of anatomy. 2007. V. 211(1). P. 117—124. https://doi.org/10.1111/j.1469—7580.2007.00748.x
  60. Hudson M. L., Kinnunen T., Cinar H. N., Chisholm A. D. C. elegans Kallmann syndrome protein KAL-1 interacts with syndecan and glypican to regulate neuronal cell migrations. Developmental biology. 2006. V. 294(2). P. 352—365. https://doi.org/10.1016/j.ydbio.2006.02.036
  61. Huisman E., Uylings H. B.M., Hoogland P. V. A 100% increase of dopaminergic cells in the olfactory bulb may explain hyposmia in Parkinson’s disease. Movement disorders. 2004. V. 19(6). P. 687—692. https://doi.org/10.1002/mds.10713
  62. Huisman E., Uylings H. B.M., Hoogland P. V. Gender‐related changes in increase of dopaminergic neurons in the olfactory bulb of Parkinson’s disease patients. Movement disorders: official journal of the Movement Disorder Society. 2008. V. 23(10). P. 1407—1413. https://doi.org/10.1002/mds.22009.
  63. Hummel T., Liu D. T., Müller C. A., Stuck B. A., Welge-Lüssen A., Hähner A. Olfactory Dysfunction: Etiology, Diagnosis, and Treatment. Deutsches Ärzteblatt International. 2023. V. 120(9). P. 146. https://doi.org/10.3238/arztebl.m2022.0411
  64. Hüttenbrink K. B., Hummel T., Berg D., Gasser T., Hähner A. Olfactory dysfunction: common in later life and early warning of neurodegenerative disease. Deutsches Ärzteblatt International. 2013. V. 110(1—2). P. 1. https://doi.org/10.3238/arztebl.2013.0001
  65. Ishimaru T., Miwa T., Nomura M., Iwato M., Furukawa M. Reversible hyposmia caused by intracranial tumour. The Journal of Laryngology & Otology. 1999. V. 113(8). P. 750—753. https://doi.org/10.1017/s0022215100145104
  66. Jacobsen J. S., Wu C. C., Redwine J. M., Comery T. A., Arias R., Bowlby M., Martone R., Morrison J. H., Pangalos M. N., Reinhart P. H., Bloom F. E. Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 2006. V. 103(13). P. 5161—5166. https://doi.org/10.1073/pnas.0600948103.
  67. Jing Y., Qi C. C., Yuan L., Liu X. W., Gao L. P., Yin J. Adult neural stem cell dysfunction in the subventricular zone of the lateral ventricle leads to diabetic olfactory defects. Neural Regeneration Research. 2017. V. 12(7). P. 1111—1118. https://doi.org/10.4103/1673—5374.211190
  68. Jamain S., Radyushkin K., Hammerschmidt K., Granon S., Boretius S., Varoqueaux F., Ramanantsoa N., Gallego J., Ronnenberg A., Winter D., Frahm J., Fischer J., Bourgeron T., Ehrenreich H., Brose N. Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proceedings of the National Academy of Sciences. 2008. V. 105(5). P. 1710—1715. https://doi.org/10.1073/pnas.0711555105
  69. Jimenez, R.C., Casajuana-Martin, N., García-Recio, A. Alcántara L., Pardo L., Campillo M., Gonzalez F. The mutational landscape of human olfactory G protein-coupled receptors. BMC Biol. 2021. V. 19. P. 21. https://doi.org/10.1186/s12915—021—00962—0
  70. Jiménez A., Organista-Juárez D., Torres-Castro A., Guzmán-Ruíz M.A, Estudillo E., Guevara-Guzmán R. Olfactory dysfunction in diabetic rats is associated with miR-146a overexpression and inflammation. Neurochemical Research. 2020. V. 45(8). P. 1781—1790. https://doi.org/10.1007/s11064—020—03041-y
  71. King A. J.F. The use of animal models in diabetes research. British journal of pharmacology. 2012. V. 166(3). P. 877—894. https://doi.org/10.1111/j.1476—5381.2012.01911.x
  72. Kohn D. F., Clifford C. B. Biology and diseases of rats. Laboratory animal medicine. 2002. P. 121—165. https://doi.org/10.1016/B978—012263951—7/50007—7
  73. Konnova E. A., Swanberg M. Animal models of Parkinson’s disease. Parkinson’s Disease: Pathogenesis and Clinical Aspects. Brisbane. Exon Publications. 2018. P. 83—106. https://doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch5
  74. Kosenko P. O., Smolikov A. B., Voynov V. B., Shaposhnikov P. D., Saevskiy A. I., Kiroy V. N. Effect of Xylazine-Tiletamine-Zolazepam on the Local Field Potential of the Rat Olfactory Bulb. Comp Med. 2020 V. 70(6). P. 492—498. https://doi.org/10.30802/AALAS-CM-20—990015.
  75. Kretschmer V., Patnaik S. R., Kretschmer F., Chawda M. M., Hernandez-Hernandez V., May-Simera H. L. Progressive characterization of visual phenotype in Bardet–Biedl syndrome mutant mice. Investigative Ophthalmology & Visual Science. 2019. V. 60(4). P. 1132—1143. https://doi.org/10.1167/iovs.18—25210
  76. Kulaga H. M., Patnaik S. R., Kretschmer F., Chawda M. M., Hernandez-Hernandez V., May-Simera H. L. Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nature genetics. 2004. V. 36(9). P. 994—998. https://doi.org/10.1038/ng1418
  77. Le Floch J. P., Le Lièvre G., Labroue M., Paul M., Peynegre R., Perlemuter L. et al. Smell dysfunction and related factors in diabetic patients. Diabetes care. 1993. V. 16(6). P. 934—937. https://doi.org/10.2337/diacare.16.6.934
  78. Le Pichon C. E., Valley M.T, Polymenidou M., Chesler A. T., Sagdullaev B. T., Aguzzi A., Firestein S. Olfactory behavior and physiology are disrupted in prion protein knockout mice. Nature neuroscience. 2009. V. 12(1). P. 60—69. https://doi.org/10.1038/nn.2238
  79. Lewis J., Dickson D. W., Lin W. L., Chisholm L., Corral A., Jones G., Yen S. H., Sahara N., Skipper L., Yager D., Eckman C., Hardy J., Hutton M., McGowan E. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science. 2001. V. 293(5534). P. 1487—1491. https://doi.org/10.1126/science.1058189
  80. Li F., Ponissery-Saidu S., Yee K. K., Wang H., Chen M. L., Iguchi N., Zhang G., Jiang P., Reisert J., Huang L. Heterotrimeric G protein subunit Gγ13 is critical to olfaction. Journal of Neuroscience. 2013. V. 33(18). P. 7975—7984. https://doi.org/10.1523/JNEUROSCI.5563—12.2013
  81. Li J., Gu C. Z., Su J. B., Zhu L. H., Zhou Y., Huang H. Y., Liu C. F. Changes in olfactory bulb volume in Parkinson’s disease: a systematic review and meta-analysis. PLoS One. 2016. V. 11(2). P. e0149286. https://doi.org/10.1371/journal.pone.0149286
  82. Lietzau G., Davidsson W., Östenson C. G., Chiazza F., Nathanson D., Pintana H., Skogsberg J., Klein T., Nyström T., Darsalia V., Patrone C. Type 2 diabetes impairs odour detection, olfactory memory and olfactory neuroplasticity; effects partly reversed by the DPP-4 inhibitor Linagliptin. Acta neuropathologica communications. 2018. V. 6. P. 1—15. https://doi.org/10.1186/s40478—018—0517—1
  83. Luo A. H., Cannon E. H., Wekesa K. S., Lyman R. F., Vandenbergh J. G., Anholt R. R. Impaired olfactory behavior in mice deficient in the  subunit of Go. Brain research. 2002. V. 941(1—2). P. 62—71. https://doi.org/10.1016/s0006—8993(02)02566—0
  84. Machado C. F., Reis-Silva T.M., Lyra C. S., Felicio L. F., Malnic B. Buried food-seeking test for the assessment of olfactory detection in mice. Bio-protocol. 2018. V. 8(12). P. e2897–e2897. https://doi.org/10.21769/BioProtoc.2897
  85. Macknin J. B., Higuchi M., Lee V. M., Trojanowski J. Q., Doty R. L. Olfactory dysfunction occurs in transgenic mice overexpressing human  protein. Brain research. 2004. V. 1000(1—2). P. 174—178. https://doi.org/10.1016/j.brainres.2004.01.047
  86. Mai Y., Klockow M., Haehner A., Hummel T. Self-assessment of olfactory function using the “Sniffin’Sticks”. European Archives of Oto-Rhino-Laryngology. 2023. V. 280(8). P. 1—13. https://doi.org/10.1007/s00405—023—07872—7
  87. Manan H. A., Yahya N., Han P., Hummel T. A. A systematic review of olfactory-related brain structural changes in patients with congenital or acquired anosmia. Brain Structure and Function. 2022. V. 227(1). P. 1—26. https://doi.org/10.1007/s00429—021—02397—3
  88. Mariman E. C., Vink R. G., Roumans N. J., Bouwman F. G., Stumpel C. T., Aller E. E., van Baak M. A., Wang P. The cilium: a cellular antenna with an influence on obesity risk. British Journal of Nutrition. 2016. V. 116(4). P. 576—592. https://doi.org/10.1017/S0007114516002282
  89. Martin C., Gervais R., Hugues E., Messaoudi B., Ravel N. Learning Modulation of Odor-Induced Oscillatory Responses in the Rat Olfactory Bulb: A Correlate of Odor Recognition? J. Neurosci. 2004. V. 24. P. 389—397. https://doi.org/10.1523/JNEUROSCI.3433—03.2004
  90. Masurkar A. V., Devanand D. P. Olfactory dysfunction in the elderly: basic circuitry and alterations with normal aging and Alzheimer’s disease. Current geriatrics reports. 2014. V. 3. P. 91—100. https://doi.org/10.1007/s13670—014—0080-y
  91. Mathis S., Le Masson G., Soulages A., Duval F., Carla L., Vallat J. M., Solé G. Olfaction and anosmia: From ancient times to COVID-19. Journal of the Neurological Sciences. 2021. V. 425. P. 117433. https://doi.org/10.1016/j.jns.2021.117433
  92. Mayer S. K., Thomas J., Helms M., Kothapalli A., Cherascu I., Salesevic A., Stalter E., Wang K., Datta P., Searby C., Seo S., Hsu Y., Bhattarai S., Sheffield V. C., Drack A. V. Progressive retinal degeneration of rods and cones in a Bardet-Biedl syndrome type 10 mouse model. Disease Models & Mechanisms. 2022. V. 15(9). P. dmm049473. https://doi.org/10.1242/dmm.049473
  93. McCarron A., Parsons D., Donnelley M. Animal and cell culture models for cystic fibrosis: which model is right for your application? The American Journal of Pathology. 2021. V. 191(2). P. 228—242. https://doi.org/10.1016/j.ajpath.2020.10.017
  94. McHugh D.R., Steele M. S., Valerio D. M., Miron A., Mann R. J., LePage D.F., Conlon R. A., Cotton C. U., Drumm M. L., Hodges C. A. A G542X cystic fibrosis mouse model for examining nonsense mutation directed therapies. PLoS One. 2018. V. 13(6). P. e0199573. https://doi.org/10.1371/journal.pone.0199573
  95. McShane R.H., Nagy Z., Esiri M. M., King E., Joachim C., Sullivan N., Smith A. D. Anosmia in dementia is associated with Lewy bodies rather than Alzheimer’s pathology. Journal of Neurology, Neurosurgery & Psychiatry. 2001. V. 70(6). P. 739—743. https://doi.org/10.1136/jnnp.70.6.739
  96. Melluso A., Secondulfo F., Capolongo G., Capasso G., Zacchia M. Bardet–Biedl Syndrome: Current Perspectives and Clinical Outlook. Therapeutics and Clinical Risk Management. 2023. V. 19. P. 115—132. https://doi.org/10.2147/TCRM.S338653.
  97. Meredith T. L., Caprio J., Kajiura S. M. Sensitivity and specificity of the olfactory epithelia of two elasmobranch species to bile salts. J. Exp. Biol. 2012. V. 215. P. 2660—2667. https://doi.org/10.1242/jeb.066241
  98. Mitrano D. A., Houle S. E., Pearce P., Quintanilla R. M., Lockhart B. K., Genovese B. C., Schendzielos R. A., Croushore E. E., Dymond E. M., Bogenpohl J. W., Grau H. J., Webb L. S. Olfactory dysfunction in the 3xTg-AD model of Alzheimer’s disease. IBRO Neuroscience Reports. 2021. V. 10. P. 51—61. https://doi.org/10.1016/j.ibneur.2020.12.004
  99. Mundiñano I. C, Caballero M. C., Ordóñez C., Hernandez M., DiCaudo C., Marcilla I., Erro M. E., Tuñon M. T., Luquin M. R. Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders. Acta neuropathologica. 2011. V. 122. P. 61—74. https://doi.org/10.1007/s00401—011—0830—2
  100. Murcia-Belmonte V., Tercero-Díaz M., Barrasa-Martín D., López de la Vieja S., Muñoz-López M., Esteban P. F. Anosmin 1 N-terminal domains modulate prokineticin receptor 2 activation by prokineticin 2. Cellular Signalling. 2022. V. 98. P. 110417. https://doi.org/10.1016/j.cellsig.2022.110417
  101. Murphy C. Olfactory and other sensory impairments in Alzheimer disease. Nature Reviews Neurology. 2019. V. 15(1). P. 11—24. https://doi.org/10.1038/s41582—018—0097—5
  102. Nakazawa A., Nakazawa H., Kaji S., Ishii S. Oscillatory Electric Potential on the Olfactory Epithelium Observed during the Breeding Migration Period in the Japanese Toad, Bufo japonicus. Zoological Sciences. 2000. V. 17. P. 293—300 https://doi.org/10.2108/jsz.17.293
  103. Neff E. P. A natural macaque model of Bardet-Biedl appears in Oregon. Lab Animal. 2020. V. 49(1). P. 17—17. https://doi.org/10.1038/s41684—019—0449—9
  104. Neuner S. M., Heuer S. E., Huentelman M. J., O’Connell K.M.S., Kaczorowski C. C. Harnessing genetic complexity to enhance translatability of Alzheimer’s disease mouse models: a path toward precision medicine. Neuron. 2019. V. 101(3). P. 399—411. e5. https://doi.org/10.1016/j.neuron.2018.11.040
  105. Nigro P., Chiappiniello A., Simoni S., Paolini Paoletti F., Cappelletti G., Chiarini P., Filidei M., Eusebi P., Guercini G., Santangelo V., Tarducci R., Calabresi P., Parnetti L., Tambasco N. Changes of olfactory tract in Parkinson’s disease: a DTI tractography study. Neuroradiology. 2021. V. 63. P. 235—242. https://doi.org/10.1007/s00234—020—02551—4
  106. Nishimura D. Y., Fath M., Mullins R. F., Searby C., Andrews M., Davis R., Andorf J. L., Mykytyn K., Swiderski R. E., Yang B., Carmi R., Stone E. M., Sheffield V. C. Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proceedings of the National Academy of Sciences. 2004. V. 101(47). P. 16588—16593. https://doi.org/101(47)16588—16593
  107. Oakley H., Cole S. L., Logan S., Maus E., Shao P., Craft J., Guillozet-Bongaarts A., Ohno M., Disterhoft J., Van Eldik L., Berry R., Vassar R. Intraneuronal -amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. Journal of Neuroscience. 2006. V. 26(40). P. 10129—10140. https://doi.org/10.1523/JNEUROSCI.1202—06.2006
  108. Oddo S., Caccamo A., Shepherd J. D., Murphy M. P., Golde T. E., Kayed R., Metherate R., Mattson M. P., Akbari Y., LaFerla F. M. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular A and synaptic dysfunction. Neuron. 2003. V. 39(3). P. 409—421. https://doi.org/10.1016/s0896—6273(03)00434—3
  109. Olichney J. M., Murphy C., Hofstetter C. R., Foster K., Hansen L. A., Thal L. J., Katzman R. Anosmia is very common in the Lewy body variant of Alzheimer’s disease. Journal of Neurology, Neurosurgery & Psychiatry. 2005. V. 76(10). P. 1342—1347. https://doi.org/10.1136/jnnp.2003.032003
  110. Pak T. K., Carter C. S., Zhang Q., Huang S. C., Searby C., Hsu Y., Taugher R. J., Vogel T., Cychosz C. C., Genova R., Moreira N. N., Stevens H., Wemmie J. A., Pieper A. A., Wang K., Sheffield V. C. A mouse model of Bardet-Biedl Syndrome has impaired fear memory, which is rescued by lithium treatment. PLoS genetics. 2021. V. 17(4). P. e1009484. https://doi.org/10.1371/journal.pgen.1009484
  111. Patino J., Karagas N. E., Chandra S., Thakur N., Stimming E. F. Olfactory dysfunction in Huntington’s disease. Journal of Huntington’s disease. 2021. V. 10(4). P. 413—422. https://doi.org/10.3233/JHD-210497
  112. Patt Y. S., Fisher L., David P., Bergwerk M., Shoenfeld Y. Autoimmunity, COVID-19 Omicron Variant, and Olfactory Dysfunction: A Literature Review. Diagnostics. 2023. V. 13(4). P. 641. https://doi.org/10.3390/diagnostics13040641
  113. Pearce R. K.B., Hawkes C. H., Daniel S. E. The anterior olfactory nucleus in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society. 1995. V. 10(3). P. 283—287. https://doi.org/10.1002/mds.870100309
  114. Peterson S. M., McGill T.J., Puthussery T., Stoddard J., Renner L., Lewis A. D., Colgin L. M.A., Gayet J., Wang X., Prongay K., Cullin C., Dozier B. L., Ferguson B., Neuringer M. Bardet-Biedl Syndrome in rhesus macaques: A nonhuman primate model of retinitis pigmentosa. Experimental eye research. 2019. V. 189. P. 107825. https://doi.org/10.1016/j.exer.2019.107825
  115. Piiponniemi T. O., Parkkari T., Heikkinen T., Puoliväli J., Park L. C., Cachope R., Kopanitsa M. V. Impaired performance of the Q175 mouse model of Huntington’s disease in the touch screen paired associates learning task. Frontiers in Behavioral Neuroscience. 2018. V. 12. P. 226. https://doi.org/10.3389/fnbeh.2018.00226
  116. Pouladi M. A., Morton A. J., Hayden M. R. Choosing an animal model for the study of Huntington’s disease. Nature Reviews Neuroscience. 2013. V. 14(10). P. 708—721. https://doi.org/10.1038/nrn3570
  117. Prediger R. D., Aguiar A. S. Jr, Rojas-Mayorquin A.E., Figueiredo C. P., Matheus F. C., Ginestet L., Chevarin C., Bel E. D., Mongeau R., Hamon M., Lanfumey L., Raisman-Vozari R. Single intranasal administration of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine in C57BL/6 mice models early preclinical phase of Parkinson’s disease. Neurotoxicity research. 2010. V. 17. P. 114—129. https://doi.org/10.1007/s12640—009—9087—0
  118. Rasmussen V. F., Rasmussen D., Thrysøe M., Karlsson P., Madsen M., Kristensen K., Nyengaard J. R., Terkelsen A. J., Vestergaard E. T., Ovesen T. Cranial Nerve Affection in Adolescents with Type 1 Diabetes Assessed by Corneal Confocal Microscopy, Smell and Taste Tests. Pediatric Diabetes. 2023. V. 2023. P. 2709361. https://doi.org/10.1155/2023/2709361
  119. Rödig N., Sellmann K., Dos Santos Guilherme M., Nguyen V. T.T., Cleppien D., Stroh A., May-Simera H.L., Endres K. Behavioral Phenotyping of Bbs6 and Bbs8 Knockout Mice Reveals Major Alterations in Communication and Anxiety. International Journal of Molecular Sciences. 2022. V. 23(23). P. 14506. https://doi.org/10.3390/ijms232314506
  120. Rodríguez-Jiménez J.C., Moreno-Paz F.J., Terán L. M., Guaní-Guerra E. Aspirin exacerbated respiratory disease: current topics and trends. Respiratory medicine. 2018. V. 135. P. 62—75. https://doi.org/10.1016/j.rmed.2018.01.002
  121. Rolen S. H., Caprio J. Bile salts are effective taste stimuli in channel catfish. J. Exp. Biol. 2008.V. 211. P. 2786—2791. https://doi.org/10.1242/jeb.018648
  122. Rosen B. H., Chanson M., Gawenis L. R., Liu J., Sofoluwe A., Zoso A., Engelhardt J. F. Animal and model systems for studying cystic fibrosis. Journal of Cystic Fibrosis. 2018. Т. 17(2). P. S28–S34. https://doi.org/10.1016/j.jcf.2017.09.001
  123. Rugarli E. I., Di Schiavi E., Hilliard M. A., Arbucci S., Ghezzi C., Facciolli A., Coppola G., Ballabio A., Bazzicalupo P. The Kallmann syndrome gene homolog in C. elegans is involved in epidermal morphogenesis and neurite branching. Development and Deseases. 2002. V.129(5). P. 1283—1294. https://doi.org/10.1242/dev.129.5.1283
  124. Schmachtenberg O. Histological and electrophysiological properties of crypt cells from the olfactory epithelium of the marine teleost Trachurus symmetricus. J Comp Neurol 2006. V. 495(1). P. 113—121. https://doi.org/10.1002/cne.20847
  125. Shu M., Wu H., Wei S., Shi Y., Li Z., Cheng Y., Fang L., Xu C. Identification and Functional Characterization of a Novel Variant in the SEMA3A Gene in a Chinese Family with Kallmann Syndrome. International Journal of Endocrinology. 2022. V. 2022. P. 2504660. https://doi.org/10.1155/2022/2504660
  126. Slotnick B., Coppola D. M. Odor-cued taste avoidance: a simple and robust test of mouse olfaction. Chemical Senses. 2015. V. 40(4). P. 269—278. https://doi.org/10.1093/chemse/bjv005
  127. Spielman D. B., Overdevest J., Gudis D. A. Olfactory outcomes in the management of aspirin exacerbated respiratory disease related chronic rhinosinusitis. World Journal of Otorhinolaryngology-Head and Neck Surgery. 2020. V. 6(4). P. 207—213. https://doi.org/10.1016/j.wjorl.2020.07.001
  128. Su C. Y., Menuz K., Carlson J. R. Olfactory perception: receptors, cells, and circuits. Cell. 2009. V. 139(1). P. 45—59. https://doi.org/10.1016/j.cell.2009.09.015
  129. Taguchi T., Ikuno M., Hondo M., Parajuli L. K., Taguchi K., Ueda J., Sawamura M., Okuda S., Nakanishi E., Hara J., Uemura N., Hatanaka Y., Ayaki T., Matsuzawa S., Tanaka M., El-Agnaf O.M.A., Koike M., Yanagisawa M., Uemura M. T., Yamakado H., Takahashi R. -Synuclein BAC transgenic mice exhibit RBD-like behaviour and hyposmia: a prodromal Parkinson’s disease model. Brain. 2020. V. 143(1). P. 249—265. https://doi.org/10.1093/brain/awz380
  130. Taniguchi M., Mitsui C., Hayashi H., Ono E., Kajiwara K., Mita H., Watai K., Kamide Y., Fukutomi Y., Sekiya K., Higashi N. Aspirin-exacerbated respiratory disease (AERD): Current understanding of AERD. Allergology International. 2019. V. 68(3). P. 289—295. https://doi.org/10.1016/j.alit.2019.05.001
  131. Tarakad A., Jankovic J. Anosmia and ageusia in Parkinson’s disease. International review of neurobiology. 2017. V. 133. P. 541—556. https://doi.org/10.1016/bs.irn.2017.05.028
  132. Tchekmedyian R., Lundberg M., Buchheit K. M., Maurer R., Gakpo D., Mullur J., Bensko J. C., Laidlaw T. M. Loss of smell in patients with aspirin‐exacerbated respiratory disease impacts mental health and quality of life. Clinical & Experimental Allergy. 2022. V. 52(12). P. 1414—1421. https://doi.org/10.1111/cea.14157
  133. Torres-Pasillas G., Chi-Castañeda D., Carrillo-Castilla P., Marín G., Hernández-Aguilar M.E., Aranda-Abreu G.E., Manzo J., García L. I. Olfactory Dysfunction in Parkinson’s Disease, Its Functional and Neuroanatomical Correlates. NeuroSci. 2023. V. 4(2). P. 134—151. https://doi.org/10.3390/neurosci4020013
  134. Tricas T. C., Kajiura S. M., Summers A. P. Response of the hammerhead shark olfactory epithelium to amino acid stimuli. J. Comp. Physiol. 2009. V 195. P. 947—954. https://doi.org/10.1007/s00359—009—0470—3
  135. Van Raamsdonk J. M., Warby S. C., Hayden M. R. Selective degeneration in YAC mouse models of Huntington disease. Brain research bulletin. 2007. V. 72(2—3). P. 124—131. https://doi.org/10.1016/j.brainresbull.2006.10.018.
  136. Várkonyi T., Körei A., Putz Z., Kempler P. Olfactory dysfunction in diabetes: a further step in exploring central manifestations of neuropathy? Angiology. 2014. V. 65(10). P. 857—860. https://doi.org/10.1177/0003319714526971
  137. Waguespack R. W. Congenital Anosmia. Archives of Otolaryngology–Head & Neck Surgery. 1992. V. 118(1). P. 10. https://doi.org/10.1001/archotol.1992.01880010012002
  138. Wakabayashi T., Hidaka R., Fujimaki S., Asashima M., Kuwabara T. Diabetes impairs Wnt3 protein-induced neurogenesis in olfactory bulbs via glutamate transporter 1 inhibition. Journal of Biological Chemistry. 2016. V. 291(29). P. 15196—15211. https://doi.org/10.1074/jbc.M115.672857
  139. Wangberg H., White A. A. Aspirin-exacerbated respiratory disease. Current opinion in immunology. 2020. V. 66. P. 9—13. https://doi.org/10.1016/j.coi.2020.02.006
  140. Weber E. M., Olsson I. A.S. Maternal behavior in Mus musculus sp.: an ethological review. Applied Animal Behavior Science. 2008. V. 114(1—2). P. 1—22. https://doi.org/10.1016/j.applanim.2008.06.006
  141. Weinstock R. S., Wright H. N., Smith D. U. Olfactory dysfunction in diabetes mellitus. Physiology & behavior. 1993. V. 53(1). P. 17—21. https://doi.org/10.1016/0031—9384(93)90005-z
  142. Wilson R. S., Arnold S. E., Schneider J. A., Tang Y., Bennett D. A. The relationship between cerebral Alzheimer’s disease pathology and odour identification in old age. Journal of Neurology, Neurosurgery & Psychiatry. 2007. V. 78(1). P. 30—35. https://doi.org/10.1136/jnnp.2006.099721
  143. Witt R. M., Galligan M. M., Despinoy J. R., Segal R. Olfactory behavioral testing in the adult mouse. Journal of Visualized Experiments. 2009. V. 23. P. e949. https://doi.org/10.3791/949.
  144. Yahyaeipour H., Ganji F., Sepehri H., Nazari Z. The effect of type 2 diabetes on the olfactory bulb structure of Wistar rats. Nova Biologica Reperta. 2023. V. 10(1). P. 11—16.
  145. Yang J., Pinto J. M. The epidemiology of olfactory disorders. Current otorhinolaryngology reports. 2016. V. 4(2). P. 130—141. https://doi.org/10.1007/s40136—016—0120—6
  146. Yang M., Crawley J. N. Simple behavioral assessment of mouse olfaction. Current protocols in neuroscience. 2009. V. 48(1). P. 8.24.1—8.24.12.
  147. https://doi.org/10.1002/0471142301.ns0824s48.
  148. Yu Q., Cai Z., Li C., Xiong Y., Yang Y., He S., Tang H., Zhang B., Du S., Yan H., Chang C., Wang N. A novel Spectrum contrast mapping method for functional magnetic resonance imaging data analysis. Frontiers in Human Neuroscience. 2021. V. 15. P. 739668. https://doi.org/10.3389/fnhum.2021.739668
  149. Zaghloul H., Pallayova M., Al-Nuaimi O., Hovis K. R., Taheri S. Association between diabetes mellitus and olfactory dysfunction: current perspectives and future directions. Diabetic Medicine. 2018. V. 35(1). P. 41—52. https://doi.org/10.1111/dme.13542
  150. Zapiec B., Dieriks B. V., Tan S., Faull R. L. M., Mombaerts P., Curtis M. A. A ventral glomerular deficit in Parkinson’s disease revealed by whole olfactory bulb reconstruction. Brain. 2017. V. 140(10). P. 2722—2736. https://doi.org/10.1093/brain/awx208
  151. Zhang C., Hara T. J. Lake char (Salvelinus namaycush) olfactory neurons are highly sensitive and specific to bile acids. J. Comp. Physiol. 2009. A 195. Р. 203—215. https://doi.org/10.1007/s00359—008—0399-y
  152. Zhao Y., He Y., He R., Zhou Y., Pan H., Zhou X., Zhu L., Zhou X., Liu Z., Xu Q., Sun Q., Tan J., Yan X., Tang B., Guo J. The discriminative power of different olfactory domains in Parkinson’s disease. Frontiers in neurology. 2020. V. 11. P. 420. https://doi.org/10.3389/fneur.2020.00420
  153. Zheng J., Wong L. R., Li K., Verma A. K., Ortiz M. E., Wohlford-Lenane C., Leidinger M. R., Knudson C. M., Meyerholz D. K., McCray P. B. Jr, Perlman S. COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature. 2021. V. 589(7843). P. 603—607. https://doi.org/10.1038/s41586—020—2943-z
  154. Ziuzia-Januszewska L., Januszewski M. Pathogenesis of olfactory disorders in COVID-19. Brain Sciences. 2022. V. 12(4). P. 449. https://doi.org/10.3390/brainsci12040449.
  155. Zou J., Wang W., Pan Y. W., Lu S., Xia Z. Methods to measure olfactory behavior in mice. Current protocols in toxicology. 2015. V. 63(1). P. 11.18. 1—11.18.21. https://doi.org/10.1002/0471140856.tx1118s63
  156. Zou Y. M., Lu D., Liu L. P., Zhang H. H., Zhou Y. Y. Olfactory dysfunction in Alzheimer’s disease. Neuropsychiatric disease and treatment. 2016. V.12. P. 869—875. https://doi.org/10.2147/NDT.S104886.

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах