Forward masking of the auditory evoked potentials in a dolphin at monaural and dichotic auditory stimulation: implications for the preceding effect and biosonar

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Short-latency auditory brainstem evoked potentials (ABR) to paired sound pulses (the conditioning and test stimuli) were recorded non-invasively in a bottlenose dolphin Tursiops truncatus. The stimuli were played through transducers contacting the left and right acoustic windows at the lower jaw. Two manners of stimulation were used: monaural (the both stimuli played through one and the same transducer) and dichotic (the conditioning and test stimuli played through different transducers, contacting the left and right acoustic window). Thе conditioning and test stimuli were equal in level and duration. The inter-stimulus delay varied from 0.15 to 10 ms. At the monaural stimulation, the suppression of the test stimulus was constant at interstimulus intervals from 0.15 to 0.5 ms; at longer intervals, the test response recovered. At the dichotic stimulation, the deepest suppression of the test response appeared at an interval of 0.5 ms; the test response recovered at both shorter and longer intervals. The complete recovery appeared at intervals as short as 0.15 ms and as long as 2 ms. Implications of the found regularities for the preceding effect and biosonar is discussed.

Sobre autores

A. Supin

A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: evgeniasysueva@gmail.com
Russia, 119071, Moscow, Leninsky Prospekt, 33

E. Sysueva

A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: evgeniasysueva@gmail.com
Russia, 119071, Moscow, Leninsky Prospekt, 33

D. Nechaev

A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: evgeniasysueva@gmail.com
Russia, 119071, Moscow, Leninsky Prospekt, 33

M. Tarakanov

A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: evgeniasysueva@gmail.com
Russia, 119071, Moscow, Leninsky Prospekt, 33

V. Popov

A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: evgeniasysueva@gmail.com
Russia, 119071, Moscow, Leninsky Prospekt, 33

Bibliografia

  1. Agaeva M.Yu., Al’tman Ya.A. Echo thresholds measured in the vertical and horizontal planes. Human Physiol. 2008. V. 34. P. 678–684.
  2. Au W.W.L. The Sonar of Dolphins. New York: Springer, 1993. P. 227.
  3. Au W.W.L., Hastings M. C. Principles of Marine Bioacoustics. New York: Springer, 2008. P. 679.
  4. Bianchi F., Verhulst S., Dau T. Experimental evidence for a cochlear source of the precedence effect. J. Assoc. Res. Otolaryngol. 2013. V. 14. P. 767–779.
  5. Bibikov N.G. What do evoked potentials tell us about the acoustic system of the harbor porpoise? Acoust. Physics. 2004. V. 50. P. 295–304.
  6. Brill R.L. The effect of attenuating returning echolocation signals at the lower jaw of a dolphin Tursiops truncatus. J. Acoust. Soc. Am. 1991. V. 89. P. 2851–2857.
  7. Brill R.L., Sevenich M.L., Sullivan T.J., Sustman J.D., Witt R.E. Behavioral evidence for hearing through the lower jaw by an echolocating dolphin, Tursiops truncatus. Marine Mammal Sci. 1988. V. 4. P. 223–230.
  8. Brown A.D., Stecker G.C. The precedence effect in sound localization: fusion and lateralization measures for pairs and trains of clicks lateralized by interaural time and level differences. J. Acoust. Soc. Am. 2013. V. 133. P. 2883–2898.
  9. Brown A.D., Stecker G.C., Tollin D.J. The precedence effect in sound localization. J. Assoc. Res. Otolaryngol. 2015. V. 16: P. 1–28.
  10. Bullock T.H., Grinnell A.D., Ikezono F., Kameda K., Katsuki Y., Nomoto M., Sato O., Suga N., Yanagisava K. Electrophysiological studies of the central auditory mechanisms in cetaceans. Z. Vergl. Physiol. 1968. V. 59. P. 117–156.
  11. Cranford T.W., Amundin M., Norris K.S. Functional morphology and homology in the odontocete nasal complex: implications for sound generation. J. Morphol. 1996. V. 228. P. 223–285.
  12. Cranford T.W., Krysl P., Hildebrand J. A. Acoustic pathways revealed: Simulated sound transmission and reception in Cuvier’s beaked whale (Ziphius cavirostris). Bioinspir. Biomim. 2008. V. 3. P. 1–10.
  13. Houser D.S., Finneran. J., Carder. D., Van Bonn W., Smith C., Hof C., Mattrey R., Ridgway S. Structural and functional imaging of bottlenose dolphin (Tursiops truncatus) cranial anatomy. J. Exp. Biol. 2004. V. 207. P. 3657–3665.
  14. Ketten D.R. Cetacean ears. Hearing by Whales and Dolphins. New York, Springer. 2000. P. 43–108.
  15. Litovsky R.Y., Shinn-Cunningham D.G. Investigation of the relationship among three common measures of the precedence: Fusion, localization dominance, and discrimination suppression. J. Acoust. Soc. Am. 2001. V. 109. P. 346–358.
  16. McCormick J.G., Wever E.G., Palin G., Ridgway S.H. Sound conduction in the dolphin ear. J. Acoust. Soc. Am. 1970. V. 48. P. 1418–1428.
  17. Møhl B., Au W.W.L., Pawloski J., Nachtigall P.E. Dolphin hearing: Relative sensitivity as a function of point of application of a contact sound source in the jaw and head region. J. Acoust. Soc. Am. 1999. V. 105. P. 3421–3424.
  18. Norris K.S. The evolution of acoustic mechanisms in odontocete cetaceans. Evolution and Environment. Yale University, New Haven. 1968. P. 297–324.
  19. Norris K.S. The echolocation of marine mammals. The Biology of Marine Mammals. Academic, New York. 1969. P. 391–424.
  20. Norris K.S. Peripheral sound processing in odontocetes. Ed Animal Sonar System.Plenum, New York. 1980. P. 495–509.
  21. Popov V.V., Nechaev D.I., Supin A.Ya., Sysueva E.V. Forward masking in a bottlenose dolphin Tursiops truncatus: dependence on azimuthal positions of the masker and test sources. J. comp. Physiol. A. 2022. V. 208. P. 605–613.
  22. Popov V.V., Nechaev D.I., Supin A.Ya., Sysueva E.V. Interaural sequential masking in the dolphin auditory system. Neurosci. Behav. Physiol. 2023. V. 53 (2). P. 272– 278.
  23. Popov V.V., Supin A.Ya. Localization of the acoustic window at the dolphin’s head. Sensory Abilities of Cetaceans: Laboratory and Field Evidence. Plenum, New York. 1990. P. 417–426.
  24. Popov V.V., Supin A.Ya., Klishin V.O. Electrophysiological study of sound conduction in dolphins. Marine Mammal Sensory Systems. Plenum, New York. 1992. P. 269–276.
  25. Popov V.V., Supin A.Ya., Klishin V.O. Auditory brainstem response recovery in the dolphin as revealed by double sound pulses of different frequencies. J. Acoust. Soc. Am. 2001. V. 110. P. 2227–2233.
  26. Schuchmann M., Hübner M. Wiegrebe L. The absence of spatial echo suppression in the echolocating bats Megader ma lyra and Phyllostomus discolor. J. exp. Biol. 2006. V. 209. P. 152–157.
  27. Seeber B.U., Hafter E.R. Failure of the precedence effect with a noise band vocoder. J. Acoust. Soc. Amer. 2011. V. 129. P. 1509–1521.
  28. Supin A.Ya., Nachtigall P.E. Gain control in the sonar of odontocetes. J. comp. Physiol. A. 2013.V. 199. P. 471–478.
  29. Supin A.Ya., Nachtigall P.E., Brees M. Evoked-potential recovery during double click stimulation in a whale: A possibility of biosonar automatic gain control. J. Acoust. Soc. Am. 2007. V. 121. P. 618–625.
  30. Supin A.Ya., Popov V.V. Temporal resolution in the dolphin’s auditory system revealed by double-click evoked potential study. J. Acoust.Soc. Am. 1995. V. 97. P. 2586–2593.
  31. Supin A.Ya., Popov V.V., Mass A.M. The Sensory Physiology of Aquatic Mammals. Boston: Kluwer, 2001. P. 332.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (30KB)
3.

Baixar (15KB)
4.

Baixar (233KB)
5.

Baixar (158KB)
6.

Baixar (34KB)
7.

Baixar (48KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies