Non-invasive recording of electroretinogram from both compound eyes in the cockroach Periplaneta americana L. in response to light stimuli

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents an original method of non-invasive registration of electroretinogram from both compound eyes of an insect. The method demonstrated high reliability and repeatability of the results. Using this method, it was shown that the magnitude of the light responses obtained from mutant cockroaches devoid of screening pigment, pearl, was about 4 times greater than those of wild-type insects. The time to peak of the response decreased with increasing light intensity, both for short-wavelength and long-wavelength stimuli. The pearl cockroaches exhibited a faster time to peak response than wild-type cockroaches; the results of covariance analysis indicate that these differences cannot be fully explained by an increase in the number of photons reaching the photoreceptor membranes and suggest additional differences in the compound eye physiology of mutant and wild-type insects. The positive voltage wave after the end of light stimulation depends on light intensity and reflects hyperpolarization of receptor cells. The photovoltaic effect, which distorts the amplitude and the shape of the response can be eliminated by using a gold wire as a recording electrode.

Full Text

Restricted Access

About the authors

E. S. Novikova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: mzhukovskaya@rambler.ru
Russian Federation, 104223, St. Petersburg, Thorez Ave, 44

L. A. Astakhova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: mzhukovskaya@rambler.ru
Russian Federation, 104223, St. Petersburg, Thorez Ave, 44

A. Y. Rotov

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: mzhukovskaya@rambler.ru
Russian Federation, 104223, St. Petersburg, Thorez Ave, 44

M. I. Zhukovskaya

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Author for correspondence.
Email: mzhukovskaya@rambler.ru
Russian Federation, 104223, St. Petersburg, Thorez Ave, 44

References

  1. Gribakin F. G. Mehanizmy fotorecepcii nasekomyh [Mechanisms of photoreception in insects]. Leningrad. Nauka, 1981. 213 p. (in Russian).
  2. Butler R. The anatomy of the compound eye of Periplaneta americana L. 1. General features J. Comp. Physiol. 1973a. V. 83. P. 223–238. https://doi.org/10.1007/BF00693676.
  3. Butler R. The anatomy of the compound eye of Periplaneta americana L. 2. Fine structure. J. Comp. Physiol. 1973b. V. 83. P. 239–262. https://doi.org/10.1007/BF00693677.
  4. Chen B., Meinertzhagen I. A., Shaw S. R. Circadian rhythms in light-evoked responses of the fly’s compound eye, and the effects of neuromodulators 5-HT and the peptide PDF. J. Comp. Physiol. A. 1999. V. 185. P. 393–404. https://doi.org/10.1007/s003590050400
  5. Cronin T. W., Järvilehto M., Weckström M., Lall A. B. Tuning of photoreceptor spectral sensitivity in fireflies (Coleoptera: Lampyridae). J. Comp. Physiol. A. 2000. V. 186. P. 1–12. https://doi.org/10.1007/s003590050001.
  6. Crook D. J., Hull-Sanders H.M., Hibbard E. L., Mastro V. C. A comparison of electrophysiologically determined spectral responses in six subspecies of Lymantria. J. Econ. Entomol. 2014. V. 107. P. 667–674. https://doi.org/10.1603/EC13464.
  7. Crook D. J., Chiesa S. G., Warden M. L., Nadel H., Ioriatti C., Furtado M. Electrophysiologically determined spectral responses in Lobesia botrana (Lepidoptera: Tortricidae). J. Econ. Entomol. 2022. V. 115(5). P. 1499–1504. https://doi.org/10.1093/jee/toac124
  8. Dolph P., Nair A., Raghu P. Electroretinogram recordings of Drosophila. Cold Spring Harb Protoc. 2011. V. 2011(1). P. pdb-prot5549. https://doi.org/10.1101/pdb.prot5549
  9. Fabietti M., Mahmud M., Lotfi A., Kaiser M. S., Averna A., Guggenmos D. J., Nudo R. J., Chiappalone M., Chen J. SANTIA: a MATLAB-based open-source toolbox for artifact detection and removal from extracellular neuronal signals. Brain Informatics. 2021. V. 8. P. 1–19. https://doi.org/10.1186/s40708-021-00135-3.
  10. French A. S., Meisner S., Liu H., Weckström M., Torkkeli P. H. Transcriptome analysis and RNA interference of cockroach phototransduction indicate three opsins and suggest a major role for TRPL channels. Frontiers in physiology. 2015. V. 6. P. 207. https://doi.org/10.3389/fphys.2015.00207.
  11. Frolov R. V., Severina I., Novikova E., Ignatova I. I., Liu H., Zhukovskaya M., Torkkeli P. H., French A. S. Opsin knockdown specifically slows phototransduction in broadband and UV-sensitive photoreceptors in Periplaneta americana. J. Comp. Physiol. A. 2022. V. 208(5–6). P. 591–604. https://doi.org/10.1007/s00359-022-01580-z
  12. Goriachenkov A. A., Rotov A. Y., Firsov M. L. Developmental dynamics of the functional state of the retina in mice with inherited photoreceptor degeneration. Neuroscience and Behavioral Physiology. 2021. V. 51. P. 807–815. https://doi.org/10.1007/s11055-021-01137-8
  13. Gribakin F. G. Photoreceptor optics of the honeybee and its eye colour mutants: the effect of screening pigments on the long-wave subsystem of colour vision. J. Comp. Physiol. A. 1988. V. 164. P. 123–140. doi: 10.1007/BF00612726.
  14. Gribakin F. G., Ukhanov K. Y. Is the white eye of insect eye-color mutants really white? J. Comp. Physiol. A. 1990. V. 167. P. 715–721. https://doi.org/10.1007/BF00192666.
  15. Gribakin F. G., Alekseyev Y. N., Ukhanov K. Y. Spectral sensitivity of white-eyed insect mutants in the UV, blue and green. Journal of Photochemistry and Photobiology B: Biology. 1996. V. 35(1–2). P. 13–18. https://doi.org/10.1016/1011-1344(96)07313-7
  16. Hochstrate P. Lanthanum mimicks the TRP photoreceptor mutant of Drosophila in the blowfly Calliphora. J. Comp. Physiol. A. 1989. V. 166. P. 179–187. https://doi.org/10.1007/BF00193462
  17. Jansonius N. M. Properties of the sodium pump in the blowfly photoreceptor cell. J. Comp. Physiol. 1990. V. 167. P. 461–467. https://doi.org/10.1007/BF00190816
  18. Kelly K. M., Mote M. I. Avoidance of monochromatic light by the cockroach Periplaneta americana. Journal of insect physiology. 1990. V. 36(4). P. 287–291. https://doi.org/10.1016/0022-1910(90)90113-T.
  19. Kugel M. The time course of the electroretinogram of compound eyes in insects and its dependence on special recording conditions. Journal of Experimental Biology. 1977. V. 71(1). P. 1–6. https://doi.org/10.1242/jeb.71.1.1
  20. Mikulovic S., Pupe S., Peixoto H. M., Do Nascimento G. C., Kullander K., Tort A. B., Leão R. N. On the photovoltaic effect in local field potential recordings. Neurophotonics. 2016. V. 3(1). P. 015002. https://doi.org/10.1117/1.NPh.3.1.015002
  21. Mote M. I., Goldsmith T. H. Spectral sensitivities of color receptors in the compound eye of the cockroach Periplaneta. J. Exp. Zool. 1970. V. 173. P. 137–145. https://doi.org/10.1002/jez.1401730203
  22. Popkiewicz B., Prete F. R. Macroscopic characteristics of the praying mantis electroretinogram. Journal of insect physiology. 2013. V. 59(8), P. 812–823. https://doi.org/10.1016/j.jinsphys.2013.05.002
  23. Ross M. H., Cochran G., Smyth D. T. Eye-color mutations in the American cockroach, Periplaneta americana. Ann. Entomol. Soc. Am. 1964. V. 57. P. 790–792. https://doi.org/10.1093/aesa/57.6.790
  24. Saari P., Immonen E. V., Kemppainen J., Heimonen K., Zhukovskaya M., Novikova E., French A. S., Torkkeli P. H., Liu H., Frolov R. V. Changes in electrophysiological properties of photoreceptors in Periplaneta americana associated with the loss of screening pigment. J. Comp. Physiol. A. 2018. V. 204. P. 915–928. https://doi.org/10.1007/s00359—018—1290—0
  25. Schirmer A. E., Prete F. R., Mantes E. S., Urdiales A. F., Bogue W. Circadian rhythms affect electroretinogram, compound eye color, striking behavior and locomotion of the praying mantis Hierodula patellifera. Journal of Experimental Biology. 2014. V. 217(21). P. 3853–3861. https://doi.org/10.1242/jeb.102947
  26. Sieving P. A., Fishman G. A., Maggiano J. M. Corneal wick electrode for recording bright flash electroretinograms and early receptor potentials. Archives of Ophthalmology. 1978. V. 96(5). P. 899–900. https://doi.org/10.1001/archopht.1978.03910050501024
  27. Wu J., Tian Y., Dong W., Han J. Protocol for electroretinogram recording of the Drosophila compound eye. STAR protocols. 2022. V. 3(2). P. 101286. https://doi.org/10.1016/j.xpro.2022.101286
  28. Zhukovskaya M. I. Modulation by octopamine of olfactory responses to nonpheromone odorants in the cockroach, Periplaneta americana L. Chemical senses. 2012. 37(5). P. 421–429. https://doi.org/10.1093/chemse/bjr121

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Original ERG recording of an intact wild-type cockroach. a — cockroach No. 2 (05/26/2021), response to a 10 ms flash of green (525 nm) light of medium intensity (2.1  108 photons/mm2/ms); b — cockroach No. 8 (05/19/2022), response to a 100 ms flash of UV (365 nm) high-intensity light (1.1  1011 photons/mm2/ms). The stimulus mark is shown above the traces. The shift in the minimum voltage value towards the end of stimulation indicates a significant contribution of the photoelectric effect.

Download (157KB)
3. Fig. 2. Amplitudes of responses to short (1–10 ms) flashes of increasing intensity of green (a, b) and UV (c, d) light. Amplitudes of responses to stimuli lasting 10–500 ms (b, d). Means and errors of the mean are shown.

Download (321KB)
4. Fig. 3. Original ERG recording of an intact wild-type cockroach in response to a 10 ms flash of UV (365 nm) light of medium intensity (4.5  1010 photons/mm2/ms). a — cockroach No. 9 (05/19/2022), no overshoot; b — cockroach No. 12 (06/06/2022), there is an overshoot. The stimulus mark is shown above the traces.

Download (120KB)
5. Fig. 4. The proportion of cockroaches with a positive voltage value at the point 0.5 (a, b) and 1 (c) seconds after stimulation (overshoot frequency). For the maximum intensity of light used for stimulation (b, c), values are given in response to flashes lasting 10–500 ms. Logarithmic approximation.

Download (274KB)
6. Fig. 5. Recorded voltage 1 s after the start of stimulation for 10 ms stimuli of increasing intensity (a, c) and stimuli of maximum intensity with increasing duration (b, d). Stimulation with green (a, b) and UV (c, d) light. Means and errors of the mean are shown.

Download (256KB)
7. Fig. 6. Time to peak ERG of cockroaches in response to short flashes (1-10 ms) of green (a, b) and UV (c, d) light of increasing intensity. For maximum light intensity, times are shown for stimuli of increasing duration (b, d). Means and errors of the mean are shown.

Download (258KB)
8. Fig. 7. Photo effect. The cockroach was replaced with a cotton swab soaked in Ringer's solution. a, b - silver chloride electrode; b-gold electrode; a — green, b, c — UV light stimulus.

Download (364KB)
9. Fig. 8. Dependence of time to peak on response amplitude: a - green, b - UV light. Mean values for responses to 10 ms light flashes and logarithmic fits are shown.

Download (166KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies