Изменение спектральных характеристик и уровня когерентности фокальной активности обонятельной луковицы крысы в динамике ксилазин-тилетамин-золазепамового наркоза

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Известно, что фокальная активность (ФА), регистрируемая в обонятельной луковице (ОЛ), в значительной степени генерируется в ее локальных нейронных сетях, имеет непосредственное отношение к обработке ольфакторной информации и подвержена влиянию различных факторов, в том числе анестетиков. С использованием 8-электродных матриц на шести взрослых самцах серых доминитицированных крыс в хронических экспериментах исследовали эффекты ксилазин-тилетамин-золазепамовой (КТЗ) анестезии на спектральные характеристики и когерентность ФА, регистрируемой с дорзальной поверхности ОЛ в частотном диапазоне 1–150 Гц в течение двух часов. Показано, что наиболее существенные изменения в ФА ОЛ крыс в КТЗ-наркозе наблюдаются в области высоких гамма-частот. Статистически значимое увеличение мощности (в 2–4 раза) и когерентности (до 50%) этих частот наблюдалось в ФА всех животных уже в течение 10–15 мин от начала наркотизации. При этом, если в бодрствовании модальные значения этих частот приходились на область 70–80 Гц, то по прошествии указанного времени – 110–130 Гц. В динамике наркоза наблюдалось постепенное смещение модального значения в распределении их мощности влево, в область более низких частот (90–110 Гц), при этом их суммарная мощность (но не когерентность) статистически значимо снижалась лишь на фоне выхода животного из наркоза.

Об авторах

В. Н. Кирой

Южный федеральный университет

Email: peza-i@mail.ru
Россия, 344058, Ростов-на-Дону, пр. Стачки, 194

П. О. Косенко

Южный федеральный университет

Автор, ответственный за переписку.
Email: peza-i@mail.ru
Россия, 344058, Ростов-на-Дону, пр. Стачки, 194

П. Д. Шапошников

Южный федеральный университет

Email: peza-i@mail.ru
Россия, 344058, Ростов-на-Дону, пр. Стачки, 194

Е. В. Асланян

Южный федеральный университет

Email: peza-i@mail.ru
Россия, 344058, Ростов-на-Дону, пр. Стачки, 194

А. И. Саевский

Южный федеральный университет

Email: peza-i@mail.ru
Россия, 344058, Ростов-на-Дону, пр. Стачки, 194

Список литературы

  1. Adrian E.D. Olfactory reactions in the brain of the hedgehog. The Journal of Physiology. 1942. V. 100 (4). P. 459–473. https://doi.org/10.1113/jphysiol.1942.sp003955
  2. Beshel J., Kopell N., Kay L.M. Olfactory Bulb Gamma Oscillations Are Enhanced with Task Demands. Journal of Neuroscience. 2007. V. 27 (31). P. 8358–8365. https://doi.org/10.1523/JNEUROSCI.1199-07.2007
  3. Buonviso N., Amat C., Litaudon P., Roux S., Royet J.-P., Farget V., Sicard G. Rhythm sequence through the olfactory bulb layers during the time window of a respiratory cycle. European Journal of Neuroscience. 2003. V. 17 (9). P. 1811–1819. https://doi.org/10.1046/j.1460-9568.2003.02619.x
  4. Cassenaer S., Laurent G. Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts. Nature. 2007. V. 448 (7154). P. 709–713. https://doi.org/10.1038/nature05973
  5. David F.O., Hugues E., Cenier T., Fourcaud-Trocmé N., Buonviso N. Specific Entrainment of Mitral Cells during Gamma Oscillation in the Rat Olfactory Bulb. PLoS Computational Biology. 2009. V. 5 (10). P. e1000551. https://doi.org/10.1371/journal.pcbi.1000551
  6. Fourcaud-Trocme N., Courtiol E., Buonviso N. Two distinct olfactory bulb sublaminar networks involved in gamma and beta oscillation generation: a CSD study in the anesthetized rat. Frontiers in Neural Circuits. 2014. V. 8. https://doi.org/10.3389/fncir.2014.00088
  7. Frederick D.E., Brown A., Brim E., Mehta N., Vujovic M., Kay L.M. Gamma and Beta Oscillations Define a Sequence of Neurocognitive Modes Present in Odor Processing. Journal of Neuroscience. 2016. V. 36 (29). P. 7750–7767. https://doi.org/10.1523/JNEUROSCI.0569-16.2016
  8. Friedman D., Strowbridge B.W. Both Electrical and Chemical Synapses Mediate Fast Network Oscillations in the Olfactory Bulb. Journal of Neurophysiology. 2003. V. 89 (5). P. 2601–2610. https://doi.org/10.1152/jn.00887.2002
  9. Fuentes R.A., Aguilar M.I., Aylwin M.L., Maldonado P.E. Neuronal Activity of Mitral-Tufted Cells in Awake Rats During Passive and Active Odorant Stimulation. Journal of Neurophysiology. 2008. V. 100 (1). P. 422–430. https://doi.org/10.1152/jn.00095.2008
  10. Fukunaga I., Herb J.T., Kollo M., Boyden E.S., Schaefer A.T. Independent control of gamma and theta activity by distinct interneuron networks in the olfactory bulb. Nature Neuroscience. 2014. V. 17 (9). P. 1208–1216. https://doi.org/10.1038/nn.3760
  11. Gire D.H., Franks K.M., Zak J.D., Tanaka K.F., Whitesell J.D., Mulligan A.A., Hen R., Schoppa N.E. Mitral Cells in the Olfactory Bulb Are Mainly Excited through a Multistep Signaling Path. Journal of Neuroscience. 2012. V. 32 (9). P. 2964–2975. https://doi.org/10.1523/JNEUROSCI.5580-11.2012
  12. Grosmaitre X., Santarelli L.C., Tan J., Luo M., Ma M. Dual functions of mammalian olfactory sensory neurons as odor detectors and mechanical sensors. Nature Neuroscience. 2007. V. 10 (3). P. 348–354. https://doi.org/10.1038/nn1856
  13. Gschwend O., Beroud J., Carleton A. Encoding Odorant Identity by Spiking Packets of Rate-Invariant Neurons in Awake Mice. PLoS ONE. 2012. V. 7 (1). P. e30155. https://doi.org/10.1371/journal.pone.0030155
  14. Hayar A, Karnup S, Shipley M, Ennis M. Olfactory Bulb Glomeruli: External Tufted Cells Intrinsically Burst at Theta Frequency and Are Entrained by Patterned Olfactory Input. Journal of Neuroscience. 2004. V. 24 (5). P. 1190–1199. https://doi.org/10.1523/JNEUROSCI.4714-03.2004
  15. Hermer-Vazquez R., Hermer-Vazquez L., Srinivasan S., Chapin J.K. Beta- and gamma-frequency coupling between olfactory and motor brain regions prior to skilled, olfactory-driven reaching. Experimental Brain Research. 2007. V. 180 (2). P. 217–235. https://doi.org/10.1007/s00221-007-0850-2
  16. Jessberger J., Zhong W., Brankačk J., Draguhn A. Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice. Neural Plasticity. 2016. V. 2016. P. 1–9. https://doi.org/10.1155/2016/4570831
  17. Kay L.M. Theta oscillations and sensorimotor performance. Proceedings of the National Academy of Sciences. 2005. V. 102 (10). P. 3863–3868. https://doi.org/10.1073/pnas.0407920102
  18. Kay L.M. Circuit Oscillations in Odor Perception and Memory. Progress in Brain Research. 2014. V. 204. P. 223–251. https://doi.org/10.1016/B978-0-444-63350-7.00009-7
  19. Kay L.M. Olfactory system oscillations across phyla. Current Opinion in Neurobiology. 2015. V. 31. P. 141–147. https://doi.org/10.1016/j.conb.2014.10.004
  20. Kay L.M., Beshel J. A Beta Oscillation Network in the Rat Olfactory System During a 2-Alternative Choice Odor Discrimination Task. Journal of Neurophysiology. 2010. V. 104 (2). P. 829–839. https://doi.org/10.1152/jn.00166.2010
  21. Kay L.M., Beshel J., Brea J., Martin C., Rojas-Líbano D., Kopell N. Olfactory oscillations: the what, how and what for. Trends in Neurosciences. 2009. V. 32 (4). P. 207–214. https://doi.org/10.1016/j.tins.2008.11.008
  22. Kay L.M., Stopfer M. Information processing in the olfactory systems of insects and vertebrates. Seminars in Cell & Developmental Biology. 2006. V. 17 (4). P. 433–442. https://doi.org/10.1016/j.semcdb.2006.04.012
  23. Kepecs A., Uchida N., Mainen Z.F. The Sniff as a Unit of Olfactory Processing. Chemical Senses. 2006. V. 31 (2). P. 167–179. https://doi.org/10.1093/chemse/bjj016
  24. Kopell N., Ermentrout G.B., Whittington M.A., Traub R.D. Gamma rhythms and beta rhythms have different synchronization properties. Proceedings of the National Academy of Sciences. 2000. V. 97 (4). P. 1867–1872. https://doi.org/10.1073/pnas.97.4.1867
  25. Kosenko P.O., Smolikov A.B., Voynov V.B., Shaposhnikov P.D., Saevskiy A.I., Kiroy V.N. Effect of Xylazine–Tiletamine–Zolazepam on the Local Field Potential of the Rat Olfactory Bulb. Comparative Medicine. 2020. V. 70 (6). P. 492–498. https://doi.org/10.30802/AALAS-CM-20-990015
  26. Lagier S., Carleton A., Lledo P. Interplay between Local GABAergic Interneurons and Relay Neurons Generates Oscillations in the Rat Olfactory Bulb. Journal of Neuroscience. 2004. V. 24 (18). P. 4382–4392. https://doi.org/10.1523/JNEUROSCI.5570-03.2004
  27. Laurent G., Wehr M., Davidowitz H. Temporal Representations of Odors in an Olfactory Network. The Journal of Neuroscience. 1996. V. 16 (12). P. 3837–3847. https://doi.org/10.1523/JNEUROSCI.16-12-03837.1996
  28. Li A., Zhang L., Liu M., Gong L., Liu Q., Xu F. Effects of different anesthetics on oscillations in the rat olfactory bulb. Journal of the American Association for Laboratory Animal Science: JAALAS. 2012. V. 51 (4). P. 458–463.
  29. Li A., Zhang L., Liu M., Gong L., Liu Q., Xu F. Effects of Different Anesthetics on Oscillations in the Rat Olfactory Bulb. Journal of the American Association for Laboratory Animal Science. 2012. V. 51 (4). P. 458–463.
  30. Li G., Cleland T.A. A coupled-oscillator model of olfactory bulb gamma oscillations. PLOS Computational Biology. 2017. V. 13(11). P. e1005760. https://doi.org/10.1371/journal.pcbi.1005760
  31. Lindén H., Tetzlaff T., Potjans T.C., Pettersen K.H., Grün S., Diesmann M., Einevoll G.T. Modeling the Spatial Reach of the LFP. Neuron. 2011. V. 72 (5). P. 859–872. https://doi.org/10.1016/j.neuron.2011.11.006
  32. Lowry C.A., Kay L.M. Chemical Factors Determine Olfactory System Beta Oscillations in Waking Rats. Journal of Neurophysiology. 2007. V. 98 (1). P. 394–404. https://doi.org/10.1152/jn.00124.2007
  33. Manabe H., Mori K. Sniff rhythm-paced fast and slow gamma-oscillations in the olfactory bulb: relation to tufted and mitral cells and behavioral states. Journal of Neurophysiology. 2013. V. 110 (7). P. 1593–1599. https://doi.org/10.1152/jn.00379.2013
  34. Martin C., Beshel J., Kay L.M. An Olfacto-Hippocampal Network Is Dynamically Involved in Odor-Discrimination Learning. Journal of Neurophysiology. 2007. V. 98 (4). P. 2196–2205. https://doi.org/10.1152/jn.00524.2007
  35. Martin C., Gervais R., Chabaud P., Messaoudi B., Ravel N. Learning-induced modulation of oscillatory activities in the mammalian olfactory system: The role of the centrifugal fibres. Journal of Physiology-Paris. 2004. V. 98 (4–6). P. 467–478. https://doi.org/10.1016/j.jphysparis.2005.09.003
  36. Martin C., Gervais R., Hugues E., Messaoudi B., Rave N. Learning Modulation of Odor-Induced Oscillatory Responses in the Rat Olfactory Bulb: A Correlate of Odor Recognition? Journal of Neuroscience. 2004. V. 24 (2). P. 389–397. https://doi.org/10.1523/JNEUROSCI.3433-03.2004
  37. Martin C., Gervais R., Messaoudi B., Ravel N. Learning-induced oscillatory activities correlated to odour recognition: a network activity. European Journal of Neuroscience. 2006. V. 23 (7). P. 1801–1810. https://doi.org/10.1111/j.1460-9568.2006.04711.x
  38. Martin C., Ravel N. Beta and gamma oscillatory activities associated with olfactory memory tasks: different rhythms for different functional networks? Frontiers in Behavioral Neuroscience. 2014. V. 8. https://doi.org/10.3389/fnbeh.2014.00218
  39. Nelson M.J., Pouget P. Do Electrode Properties Create a Problem in Interpreting Local Field Potential Recordings? Journal of Neurophysiology. 2010. V. 103 (5). P. 2315–2317. https://doi.org/10.1152/jn.00157.2010
  40. Nusser Z., Kay L.M., Laurent G., Homanics G.E., Mody I. Disruption of GABA A Receptors on GABAergic Interneurons Leads to Increased Oscillatory Power in the Olfactory Bulb Network. Journal of Neurophysiology. 2001. V. 86 (6). P. 2823–2833. https://doi.org/10.1152/jn.2001.86.6.2823
  41. Plourde G., Arseneau F. Attenuation of high-frequency (30–200 Hz) thalamocortical EEG rhythms as correlate of anaesthetic action: evidence from dexmedetomidine. British Journal of Anaesthesia. 2017. V. 119 (6). P. 1150–1160. https://doi.org/10.1093/bja/aex329
  42. Polese D., Martinelli E., Marco S., di Natale C., Gutierrez-Galvez A. Understanding Odor Information Segregation in the Olfactory Bulb by Means of Mitral and Tufted Cells. PLoS ONE. 2014. V. 9 (10). P. e109716. https://doi.org/10.1371/journal.pone.0109716
  43. Ravel N., Chabaud P., Martin C., Gaveau V., Hugues E., Tallon-Baudry C., Bertrand O., Gervais R. Olfactory learning modifies the expression of odour-induced oscillatory responses in the gamma (60–90°Hz) and beta (15–40°Hz) bands in the rat olfactory bulb. European Journal of Neuroscience. 2003. V. 17(2). P. 350–358. https://doi.org/10.1046/j.1460-9568.2003.02445.x
  44. Ravel N., Pager J. Respiratory patterning of the rat olfactory bulb unit activity: Nasal versus tracheal breathing. Neuroscience Letters. 1990. V. 115 (2–3). P. 213–218. https://doi.org/10.1016/0304-3940(90)90457-K
  45. Rojas-Líbano D., Kay L.M. Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system. Cognitive Neurodynamics. 2008. V. 2 (3). P. 179–194. https://doi.org/10.1007/s11571-008-9053-1
  46. Rojas-Libano D., Kay L.M. Interplay between Sniffing and Odorant Sorptive Properties in the Rat. Journal of Neuroscience. 2012. V. 32 (44). P. 15577–15589. https://doi.org/10.1523/JNEUROSCI.1464-12.2012
  47. Saghatelyan A., Carleton A., Lagier S., de Chevigny A., Lledo P.-M. Local neurons play key roles in the mammalian olfactory bulb. Journal of Physiology-Paris. 2003. V. 97 (4–6). P. 517–528. https://doi.org/10.1016/j.jphysparis.2004.01.009
  48. Schaefer A.T., Angelo K., Spors H., Margrie T.W. Neuronal Oscillations Enhance Stimulus Discrimination by Ensuring Action Potential Precision. PLoS Biology. 2006. V. 4 (6). P. e163. https://doi.org/10.1371/journal.pbio.0040163
  49. Schoppa N.E. Synchronization of Olfactory Bulb Mitral Cells by Precisely Timed Inhibitory Inputs. Neuron. 2006. V. 49 (2). P. 271–283. https://doi.org/10.1016/j.neuron.2005.11.038
  50. Schoppa N.E., Westbrook G.L. Glomerulus-Specific Synchronization of Mitral Cells in the Olfactory Bulb. Neuron. 2001. V. 31 (4). P. 639–651. https://doi.org/10.1016/S0896-6273(01)00389-0
  51. Shcherban I.V., Kosenko P.O., Shcherban O.G., Lobzenko P.V. Method of automatic search for odor-induced patterns in bioelectric activity of a rat olfactory bulb. Informatsionno-Upravliaiushchie Sistemy. 2020. V. 5. P. 62–69. https://doi.org/10.31799/1684-8853-2020-5-62-69
  52. Shepelev I., Kiroy V., Scherban I., Kosenko P., Smolikov A., Saevskiy A. Tracking of informative gamma frequency range in local field potentials of anesthetized rat olfactory bulb for odor discrimination. Biomedical Signal Processing and Control. 2022. V. 71. P. 103139. https://doi.org/10.1016/j.bspc.2021.103139
  53. von Stein A., Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology. 2000. V. 38 (3). P. 301–313. https://doi.org/10.1016/S0167-8760(00)00172-0
  54. Wachowiak M. All in a Sniff: Olfaction as a Model for Active Sensing. Neuron. 2011. V. 71 (6). P. 962–973. https://doi.org/10.1016/j.neuron.2011.08.030
  55. Wachowiak M., Shipley M.T. Coding and synaptic processing of sensory information in the glomerular layer of the olfactory bulb. Seminars in Cell & Developmental Biology. 2006. V. 17 (4). P. 411–423. https://doi.org/10.1016/j.semcdb.2006.04.007
  56. Yaeli S. Form-function relations in cone-tipped stimulating microelectrodes. Frontiers in Neuroengineering. 2009. V. 2. https://doi.org/10.3389/neuro.16.013.2009

Дополнительные файлы


© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах