Relationship of the magnetic compass and vision in birds: in search of a receptor cell

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The existence of the magnetic compass system was first shown in birds. Since then, a large amount of data has been accumulated on the performance of the avian magnetic compass and its relationship with visual reception. The current dominant concept is that the receptor for the magnetic compass in birds is located in the retina. The most popular hypothesis for the mechanism of operation of magnetic field receptors is the radical pair model, and a candidate for the role of the primary magnetoreceptor molecule is cryptochrome, and more specifically, its isoform, cryptochrome 4a. In recent years, data have been published on the interaction of cryptochrome with some proteins involved in the phototransduction cascade, as well as promising data from electrophysiological studies combining light and magnetic stimuli. In addition, a number of morphological studies of the avian retina also allow us to narrow down the range of promising cells for the role of a magnetoreceptor, and the double cone is currently the most likely candidate. In this review, we discuss the latest research data in this area.

About the authors

L. A. Astakhova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Author for correspondence.
Email: lubkins@yandex.ru
Russia, 194223, St. Petersburg, Prospekt Toreza, 44

A. Yu. Rotov

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences; St. Petersburg State University

Email: lubkins@yandex.ru
Russia, 194223, St. Petersburg, Prospekt Toreza, 44; Russia, 199034, St. Petersburg, University Embankment, 7/9

N. S. Chernetsov

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences; St. Petersburg State University; Orbeli Institute of Physiology of NAS RA

Email: lubkins@yandex.ru
Russia, 194223, St. Petersburg, Prospekt Toreza, 44; Russia, 199034, St. Petersburg, University Embankment, 7/9; Armenia, 0028, Yerevan, Orbeli Brothers Street, 22

References

  1. Astakhova L.A., Rotov A.Yu., Kavokin K.V., Chernetsov N.S., Firsov M.L. Relationship between avian magnetic compass and photoreception: hypotheses and unresolved questions. Biology Bulletin Reviews. 2020. V. 10 (1). P. 1–10. https://doi.org/10.1134/S2079086420010028
  2. Chernetsov N.S. Orientation and navigation of migrating birds. Biology Bulletin. 2016. V. 43 (8). P. 788–803. https://doi.org/10.1134/S1062359016080069
  3. Ahlers M.T., Block C.T., Winklhofer M., Greschner M. Integration and evaluation of magnetic stimulation in physiology setups. PloS one. 2022. V. 17 (7). P. e0271765. https://doi.org/10.1371/journal.pone.0271765
  4. Åkesson S. The ecology of polarisation vision in birds. In: Polarized light and polarization vision in animal sciences. Berlin. Springer, Heidelberg. 2014. P. 275–292. https://doi.org/10.1007/978-3-642-54718-8_12
  5. Arshavsky V.Y., Burns M.E. Current understanding of signal amplification in phototransduction. Cell. Logist. 2014. V. 4. P. e28680. https://doi.org/10.4161/cl.29390
  6. Astakhova L.A., Rotov A.Y., Cherbunin R.V., Goriachenkov A.A., Kavokin K.V., Firsov M.L., Chernetsov N. Electroretinographic study of the magnetic compass in European robins. Proceedings of the Royal Society B. 2020.б V. 287. № 1940. P. 20202507. https://doi.org/10.1098/rspb.2020.2507
  7. Baden T., Osorio D. The retinal basis of vertebrate color vision. Annu. ReV. Vis. Sci. 2019. V. 5. P. 177–200. https://doi.org/10.20944/preprints201811.0498.v1
  8. Bailey M.J., Cassone, V.M. Melanopsin expression in the chick retina and pineal gland. Molecular Brain Research. 2005. V. 134 (2). P. 345–348. https://doi.org/10.1016/j.molbrainres.2004.11.003
  9. Balay S.D., Hochstoeger T., Vilceanu A., Malkemper E.P., Snider W., Dürnberger G., Mechtler K., Schuechner S., Ogris E., Nordmann G.C., Ushakova L. The expression, localisation and interactome of pigeon CRY2. Scientific reports. 2021. V. 11 (1). P. 1–13. https://doi.org/10.1038/s41598-021-99207-x
  10. Beason R.C., Semm P. Magnetic responses of the trigeminal nerve system of the bobolink (Dolichonyx oryzivorus). Neuroscience letters. 1987. V. 80 (2). P. 229–234. https://doi.org/10.1016/0304-3940(87)90659-8
  11. Bischof H.J., Nießner C., Peichl L., Wiltschko R., Wiltschko W. Avian ultraviolet/violet cones as magnetoreceptors: The problem of separating visual and magnetic information. Communicative and integrative biology. 2011. V. 4 (6). P. 713–716. https://doi.org/10.4161/cib.17338
  12. Bolte P., Einwich A., Seth P.K., Chetverikova R., Heyers D., Wojahn I., Janssen-Bienhold U., Feederle R., Hore P., Dedek K., Mouritsen Y. Cryptochrome 1a localisation in light- and dark-adapted retinae of several migratory and non-migratory bird species: No signs of light-dependent activation. Ethol. Ecol. Evol. 2021. V. 33. P. 248–272. https://doi.org/10.1080/03949370.2020.1870571
  13. Bottesch M., Gerlach G., Halbach M., Bally A., Kingsford M.J., Mouritsen M. A magnetic compass that might help coral reef fish larvae return to their natal reef. Curr. Biol. 2016. V. 26. P. R1266–R1267. https://doi.org/10.1016/j.cub.2016.10.051
  14. Briggman K.L., Euler T. Bulk electroporation and population calcium imaging in the adult mammalian retina. Journal of neurophysiology. 2011. V. 105 (5). P. 2601–2609. https://doi.org/10.1152/jn.00722.2010
  15. Chaves I., Pokorny R., Byrdin M., Hoang N., Ritz T., Brettel K., Essen L.O., van der Horst G.T., Batschauer A., Ahmad M. The cryptochromes: blue light photoreceptors in plants and animals. Annu. ReV. Plant. Biol. 2011. V. 62 (1). P. 335–364. https://doi.org/10.1146/annurev-arplant-042110-103759
  16. Chernetsov N., Nikishena I., Zavarzina N., Kulbach O. Perception of static magnetic field by humans: a review. Biol. Comm. 2021. V. 66 (2). P. 171–178. https://doi.org/10.21638/spbu03.2021.208
  17. Chetverikova R., Dautaj G., Schwigon L., Dedek K., Mouritsen H. Double cones in the avian retina form an oriented mosaic which might facilitate magnetoreception and/or polarized light sensing. J. R. Soc. Interface. 2022. V. 19. P. 20210877. https://doi.org/10.1098/rsif.2021.0877
  18. Collin J.P., Oksche A., Structural and functional relationships in the nonmammalian pineal gland. The pineal gland. 1981. V. 1. P. 27–67.
  19. Deutschlander M.E., Freake M.J., Borland S.C., Phillips J.B., Madden R.C., Anderson L.E., Wilson B.W. Learned magnetic compass orientation by the Siberian hamster, Phodopus sungorus. Anim. Behav. 2003. V. 65 (4). P. 779–786. https://doi.org/10.1006/anbe.2003.2111
  20. Diego-Rasilla F.J., Luengo R.M., Phillips J.B. Use of a light-dependent magnetic compass for y-axis orientation in European common frog (Rana temporaria) tadpoles. J. Comp. Physiol. A. 2013. V. 199. P. 619–628. https://doi.org/10.1007/s00359-013-0811-0
  21. Dreyer D., Frost B., Mouritsen H., Günther A., Green K., Whitehouse M., Johnsen S., Heinze S., Warrant E. The Earth’s magnetic field and visual landmarks steer migratory flight behaviour in the nocturnal Australian Bogong moth. Curr. Biol. 2018. V. 28 (13). P. 2160–2166.e5. https://doi.org/10.1016/j.cub.2018.05.030
  22. Einwich A., Seth P.K., Bartölke R., Bolte P., Feederle R., Dedek K., Mouritsen H. Localisation of cryptochrome 2 in the avian retina. Journal of Comparative Physiology A. 2022. V. 208 (1). P. 69–81. https://doi.org/10.1007/s00359-021-01506-1
  23. Engels S., Schneider N.-L., Lefeldt N., Hein C.M., Zapka M., Michalik A., Elbers D., Kittel A., Hore P.J., Mouritsen H. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature. 2014. V. 509 (7500). P. 353–356. https://doi.org/10.1038/nature13290
  24. Euler T., Franke K., Baden T. Studying a light sensor with light: multiphoton imaging in the retina. Multiphoton Microscopy. Humana, New York, NY, 2019. P. 225–250. https://doi.org/10.1007/978-1-4939-9702-2_10
  25. Finkelstein A., Las L., Ulanovsky N. 3-D maps and compasses in the brain. Annu. Re.V. Neurosci. 2016. V. 39. P. 171–196. https://doi.org/10.1146/annurev-neuro-070815-013831
  26. Fleischmann P.N., Grob R., Müller V.L., Wehner R., Rössler W. The geomagnetic field is a compass cue in Cataglyphis ant navigation. Current Biology, (2018). V. 28 (9). P. 1440–1444. https://doi.org/10.1016/j.cub.2018.03.043
  27. Gegear R.J., Casselman A., Waddell S., Reppert S.M. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature. 2008. V. 454. P. 1014–1018. https://doi.org/10.1038/nature07183
  28. Görtemaker K., Yee C., Bartölke R., Behrmann H., Voß J.-O., Schmidt J., Xu J., Solovyeva V., Leberecht B., Behrmann E., Mouritsen H., Koch K.-W. Direct interaction of avian cryptochrome 4 with a cone specific G-protein. Cells. 2022. V. 11. P. 2043. https://doi.org/10.3390/cells11132043
  29. Guerra P.A., Gegear R.J., Reppert S.M., 2014. A magnetic compass aids monarch butterfly migration. Nature Comm. 2014. V. 5. P. 4164. https://doi.org/10.1038/ncomms5164
  30. Günther A., Dedek K., Haverkamp S., Irsen S., Briggman K.L., Mouritsen H. Double cones and the diverse connectivity of photoreceptors and bipolar cells in an avian retina. Journal of Neuroscience. 2021. V. 41 (23). P. 5015–5028. https://doi.org/10.1523/JNEUROSCI.2495-20.2021
  31. Günther A., Einwich A., Sjulstok E., Feederle R., Bolte P., Koch K.-W., Solov’yov I.A., Mouritsen H. Double-cone localization and seasonal expression pattern suggest a role in magnetoreception for European robin cryptochrome 4. Curr. Biol. 2018. V. 28. P. 211–223. https://doi.org/10.1016/j.cub.2017.12.003
  32. Hart N.S. The visual ecology of avian photoreceptors. Progress in retinal and eye research. 2001. V. 20 (5). P. 675–703. https://doi.org/10.1016/S1350-9462(01)00009-X
  33. Heyers D., Manns M., Luksch H., Güntürkün O., Mouritsen H. A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PLoS One. 2007. V. 2 (9). P. e937. https://doi.org/10.1371/journal.pone.0000937
  34. Heyers D., Musielak I., Haase K. Herold C., Bolte P. Güntürkün O., Mouritsen H. Morphology, biochemistry and connectivity of Cluster N and the hippocampal formation in a migratory bird. Brain Struct Funct. 2022 P. 1–19. https://doi.org/10.1007/s00429-022-02566-y
  35. Hiscock H.G., Mouritsen H., Manolopoulos D.E., Hore P.J. Disruption of magnetic compass orientation in migratory birds by radiofrequency electromagnetic fields. Biophys. J. 2017. V. 113 (7). P. 1475–1484. https://doi.org/10.1016/j.bpj.2017.07.031
  36. Holland R., Thorup K., Vonhof M.J., Cochran W.W., Wikelski M. Bat orientation using Earth’s magnetic field. Nature. 2006. V. 444. P. 702. https://doi.org/10.1038/444702a
  37. Hore P.J., Mouritsen H. The radical-pair mechanism of magnetoreception. Annu. ReV. Biophys. 2016. V. 45. P. 299–344. https://doi.org/10.1146/annurev-biophys-032116-09454
  38. Jasiński A. Fine structure of capillaries in the pecten oculi of the sparrow, Passer domesticus. Zeitschriftfür Zellforschung und Mikroskopische Anatomie. 1973. V. 146 (2). P. 281–292. https://doi.org/10.1007/BF00307352
  39. Johnsen S., Mattern E., Ritz T. Light-dependent magnetoreception: quantum catches and opponency mechanisms of possible photosensitive molecules. J. ExP. Biol. 2007. V. 210 (18). P. 3171–3178. https://doi.org/10.1242/jeb.007567
  40. Kavokin K. The puzzle of magnetic resonance effect on the magnetic compass of migratory birds. Bioelectromagnetics. 2009. V. 30. P. 402–410. https://doi.org/10.1002/bem.20485
  41. Kelber A. Bird colour vision–from cones to perception. Current Opinion in Behavioral Sciences. 2019. V. 30. P. 34–40. https://doi.org/10.1016/j.cobeha.2019.05.003
  42. Kirschfeld K. Spectral sensitivity of the accessory optic system of the pigeon. J Comp Physiol A. 1998. V. 183. P. 1–6. https://doi.org/10.1007/s003590050229
  43. Kobylkov D., Wynn J., Winklhofer M., Chetverikova R., Xu J., Hiscock H., Hore P. J., Mouritsen H. Electromagnetic 0.1–100 kHz noise does not disrupt orientation in a night-migrating songbird implying a spin coherence lifetime of less than 10 µs. J. R. Soc. Interface. 2019. V. 16 (161). P. 20190716. https://doi.org/10.1098/rsif.2019.0716
  44. Leberecht B., Kobylkov D., Karwinkel T., Döge S., Burnus L., et al.. Broadband 75–85 MHz radiofrequency fields disrupt magnetic compass orientation in night‑migratory songbirds consistent with a flavin‑based radical pair magnetoreceptor. J. ComP. Physiol. A. 2022. V. 208: P. 97–106. https://doi.org/10.1007/s00359-021-01537-8
  45. Lohmann K.L., Pentcheff N.D., Nevitt G.A., Stetten G.D., Zimmer-Faust R.K., Jarrard H.E., Boles L.S. Magnetic orientation of spiny lobsters in the ocean: experiments with undersea coil systems. J. ExP. Biol. 1995. V. 198. P. 2041–2048. https://doi.org/10.1242/jeb.198.10.2041
  46. Malewski S., Begall S., Burda H. Learned and spontaneous magnetosensitive behaviour in the Roborovski hamster (Phodopus roborovskii). Ethology. 2018. V. 124 (6). P. 423–431. https://doi.org/10.1111/eth.12744
  47. Melgar J., Lind O., Muheim R. No response to linear polarization cues in operant conditioning experiments with zebra finches. The Journal of Experimental Biology. 2015. V. 218 (13). P. 2049–2054. https://doi.org/10.1242/jeb.122309
  48. Michael A.K., Fribourgh J.L., Van Gelder R.N., Partch C.L., Animal cryptochromes: Divergent roles in light perception, circadian timekeeping and beyond. Photochem. Photobiol. 2017. V. 93. P. 128–140. https://doi.org/10.1111/phP.12677
  49. Mouritsen H. Long-distance navigation and magnetoreception in migratory animals. Nature. 2018. V. 558 (7708). P. 50–59. https://doi.org/10.1038/s41586-018-0176-1
  50. Mouritsen H., Feenders G., Liedvogel M., Wada K., Jarvis E.D. Night-vision brain area in migratory songbirds. Proc. Natl. Acad. Sci. U.S.A. 2005. V. 102 (23). P. 8339–8344. https://doi.org/10.1073/pnas.0409575102
  51. Muheim R. Behavioural and physiological mechanisms of polarized light sensitivity in birds. Philosophical Transactions of the Royal Society B: Biological Sciences. 2011. V. 366 (1565). P. 763–771. https://doi.org/10.1098/rstb.2010.0196
  52. Muheim R., Bäckman J., Åkesson S. Magnetic compass orientation in European robins is dependent on both wavelength and intensity of light. J. ExP. Biol. 2002. V. 205. № 24. P. 3845–3856. https://doi.org/10.1242/jeb.205.24.3845
  53. Munro U., Munro J.A., Phillips J.B., Wiltschko W. Effect of wavelength of light and pulse magnetisation on different magnetoreception systems in a migratory bird. Aust. J. Zool. 1997. V. 45 (2). P. 189–198. https://doi.org/10.1071/ZO96066
  54. Nießner C., Denzau S., Gross J.C., Peichl L., Bischof H.J., Fleissner G., WiltschkoW., Wiltschko R. Avian ultraviolet/violet cones identified as probable magnetoreceptors. PLoS ONE. 2011. V. 6. P. e20091. https://doi.org/10.1371/journal.pone.0020091
  55. Nießner C., Denzau S., Peichl L., Wiltschko W., Wiltschko R. Magnetoreception in birds: I. Immunohistochemical studies concerning the cryptochrome cycle. J. ExP. Biol. 2014. V. 217. P. 4221–4224. https://doi.org/10.1242/jeb.110965
  56. Pakhomov A., Bojarinova J., Cherbunin R., Chetverikova R., Grigoryev P.S., Kavokin K., Kobylkov D., Lubkov-skaja R., Chernetsov N. Very weak oscillating magnetic field disrupts the magnetic compass of songbird migrants. J. R. Soc. Interface. 2017. V. 14 (133). P. 20170364. https://doi.org/10.1098/rsif.2017.0364
  57. Pinzon-Rodriguez A., Muheim R. Zebra finches have a light-dependent magnetic compass similar to migratory birds. J. Exp Biol. 2017. V. 220. P. 1202–1209. https://doi.org/10.1242/jeb.148098
  58. Pinzon-Rodriguez A., Muheim R. Cryptochrome expression in avian UV cones: revisiting the role of CRY1 as magnetoreceptor. Scientific reports. 2021. V. 11 (1). P. 1–13. https://doi.org/10.1038/s41598-021-92056-8
  59. Pugh E.N.Jr., Lamb T.D. Phototransduction in vertebrate rods and cones: Molecular mechanisms of amplification, recovery and light adaptation. In Handbook of Biological Physics. New York, NY, USA. Elsevier Science. 2000. P. 183–255.10. https://doi.org/10.1016/S1383-8121(00)80008-1
  60. Quesada A., Génis-Gálvez J. M. Morphological and structural study of Landolt’s club in the chick retina. Journal of Morphology. 1985. V. 184 (2). P. 205–214. https://doi.org/10.1002/jmor.1051840210
  61. Quinn T.P. Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry. J. ComP. Physiol. 1980. V. 137. P. 243–248. https://doi.org/10.1007/BF00657119
  62. Ramírez E., Marín G., Mpodozis J., Letelier J.C. Extracellular recordings reveal absence of magneto sensitive units in the avian optic tectum. J. ComP. Physiol. A. 2014. V. 200(12). P. 983-996. https://doi.org/10.1007/s00359-014-0947-6
  63. Rappl R., Wiltschko R., Weindler P., Berthold P., Wiltschko W. Orientation behavior of Garden Warblers, Sylvia borin, under monochromatic light of various wavelengths. Auk. 2000. V. 117 (1). P. 256–260. https://doi.org/10.1093/auk/117.1.256
  64. Ritz T., Adem S., Schulten K. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 2000. V. 78 (2). P. 707–718. https://doi.org/10.1016/S0006-3495(00)76629-X
  65. Ritz T., Thalau P., Phillips J.B., Wiltschko R., Wiltschko W. Resonance effects indicate a radical pair mechanism for avian magnetic compass. Nature. 2004. V. 429. P. 177–180. https://doi.org/10.1038/nature02534
  66. Ritz T., Wiltschko R., Hore P.J., Rodgers C.T., Stapput K., Thalau P., Timmel C.R., Wiltschko W. Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys. J. 2009. V. 96. P. 3451–3457. https://doi.org/10.1016/j.bpj.2008.11.072
  67. Roberts N.W., Porter M.L., Cronin T.W. The molecular basis of mechanisms underlying polarization vision. Philosophical Transactions of the Royal Society B: Biological Sciences. 2011. V. 366 (1565). P. 627–637. https://doi.org/10.1098/rstb.2010.0206
  68. Rotov A.Y., Cherbunin R.V., Anashina A., Kavokin K.V., Chernetsov N., Firsov M.L., Astakhova L.A. Searching for magnetic compass mechanism in pigeon retinal photoreceptors. Plos one. 2020. V. 15 (3). P. e0229142. https://doi.org/10.1371/journal.pone.0229142
  69. Rotov A.Y., Cherbunin R.V., Kavokin K.V., Chernetsov N.S., Firsov M.L., Astakhova L.A. Magnetoreception in the retina of the domestic pigeon Columbia livia: a retinographic search. Journal of Evolutionary Biochemistry and Physiology. 2018. V. 54 (6), P. 498–501. https://doi.org/10.1134/S00220930180600121
  70. Rotov A.Y., Goriachenkov A.A., Cherbunin R.V., Firsov M.L., Chernetsov N., Astakhova L.A. Magnetoreceptory Function of European Robin Retina: Electrophysiological and Morphological Non-Homogeneity. Cells. 2022. V. 11 (9). P. 3056. https://doi.org//10.3390/cells11193056
  71. Schneider T., Thalau H.P., Semm P., Wiltschko W. Melatonin is crucial for the migratory orientation of pied flycatchers (Ficedula hypoleuca Pallas). J. Exp. Biol. 1994. V. 194 (1). P. 255–262. https://doi.org/10.1242/jeb.194.1.255
  72. Schulten K. Magnetic field effects in chemistry and biology. Festkörperprobleme. 1982. V. 22. P. 61–83. https://doi.org/10.1007/BFb0107935
  73. Schulten K., Swenberg C.E., Weller A. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z. Phys. Chem. (NF). 1978. V. 111 (1). P. 1–5. https://doi.org/10.1524/zpch.1978.111.1.001
  74. Schulten K., Windemuth A. Model for a physiological magnetic compass. Biophysical Effects of Steady Magnetic Fields. Proc. Physics. Ed. Maret G., Boccara N., Kiepenheuer J. Berlin: Springer. 1986. V. 11. P. 99–106.
  75. Seifert M., Baden T., Osorio D. The retinal basis of vision in chicken. Seminars in cell & developmental biology. 2020. V. 106. P. 106–115. https://doi.org/10.1016/j.semcdb.2020.03.011
  76. Semm P., Beason R.C. Responses to small magnetic variations by the trigeminal system of the bobolink. Brain research bulletin. 1990. V. 25 (5). P. 735–740. https://doi.org/10.1016/0361-9230(90)90051-Z
  77. Semm P., Demaine C. Neurophysiological properties of magnetic cells in the pigeon’s visual system. J. Comp. Physiol. A. 1986. V. 159 (5). P. 619–625. https://doi.org/10.1007/BF00612035
  78. Seth P.K., Balaji V., Dedek K. The retinal circuitry for magnetoreception in migratory birds. Neuroforum. 2021. V. 27 (3). P. 159–166. https://doi.org/10.1515/nf-2021-0007
  79. Shakhparonov V.V., Ogurtsov S.V. Marsh frogs, Pelophylax ridibundus, determine migratory direction by magnetic field. J. Comp. Physiol. A. 2017. V. 203 (1). P. 35–43. https://doi.org/10.1007/s00359-016-1132-x
  80. Smith E.L., Greenwood V.J., Bennett A.T.D. Ultraviolet colour perception in European starlings and Japanese quail. Journal of Experimental Biology. 2002. V. 205 (21). P. 3299–3306. https://doi.org/10.1242/jeb.205.21.3299
  81. Stapput K., Thalau P., Wiltschko R., Wiltschko W. Orientation of birds in total darkness. Curr. Biol. 2008. V. 18 (8). P. 602–606. https://doi.org/10.1016/j.cub.2008.03.046
  82. Thalau P., Ritz T., Stapput K., Wiltschko R., Wiltschko W. Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field. Naturwissenschaften. 2005. V. 92 (2). P. 86–90. https://doi.org/10.1007/s00114-004-0595
  83. Toomey M.B., Corbo J.C. Evolution, development and function of vertebrate cone oil droplets. Frontiers in Neural Circuits. 2017. V. 11. P. 97. https://doi.org/10.3389/fncir.2017.00097
  84. Walcott C., Green R.P. Orientation of homing pigeons altered by a change in the direction of an applied magnet field. Science. 1974. V. 184. P. 180–182. https://doi.org/10.1126/science.184.4133.180
  85. Wilby D., Roberts N.W. Optical influence of oil droplets on cone photoreceptor sensitivity. Journal of Experimental Biology. 2017. V. 220 (11). P. 1997–2004. https://doi.org/10.1242/jeb.152918
  86. Willis A.M., Wilkie D.A. Avian ophthalmology part 1: anatomy, examination, and diagnostic techniques. Journal of Avian Medicine and Surgery. 1999. P. 160–166. https://doi.org/www.jstor.org/stable/30130679
  87. Wiltschko R., Munro U., Ford H., Stapput K., Wiltschko W. Light-dependent magnetoreception: orientation behaviour of migratory birds under dim red light. J. Exp. Biol. 2008. V. 211 (20). P. 3344–3350. https://doi.org/10.1242/jeb.020313
  88. Wiltschko R., Nießner C., Wiltschko W. The magnetic compass of birds: The role of cryptochrome. Front. Physiol. 2021. V. 12. P. 667000. https://doi.org/10.3389/fphys.2021.667000
  89. Wiltschko R., Ritz T., Stapput K., Thalau P., Wiltschko W. Two different types of light-dependent responses to magnetic fields in birds. Curr. Biol. 2008. V. 15 (16). P. 1518–1523. https://doi.org/10.1016/j.cub.2005.07.037
  90. Wiltschko R., Wiltschko W. Pigeon homing: effect of various wavelengths of light during displacement. Naturwissenschaften. 1998. V. 85. P. 164–167.
  91. Wiltschko W. Über den Einfluβ statischer Magnetfelder auf die Zugorientierung der Rotkehlchen (Erithacus rubecula). Z. Tierpsychol. 1968. V. 25. P. 537–558. https://doi.org/10.1111/j.1439-0310.1968.tb00028.x
  92. Wiltschko W. Further analysis of the magnetic compass of migratory birds. In Animal migration, navigation and homing. Berlin. Springer. 1978. P. 301–310. https://doi.org/10.1007/978-3-662-11147-5_29
  93. Wiltschko W., Freire R., Munro U., Ritz T., Rogers L., Thalau P., Wiltschko R. The magnetic compass of domestic chickens. J. Exp. Biol. 2007. V. 210. P. 2300–2310.
  94. Wiltschko W., Gesson M., Wiltschko R. Magnetic compass orientation of European robins under 565 nm green light. Naturwissenschaften. 2001. V. 88 (9). P. 387–390. https://doi.org/10.1007/s001140100248
  95. Wiltschko W., Munro U., Ford H., Wiltschko R. Red light disrupts magnetic orientation of migratory birds. Nature. 1993. V. 364 (6437). P. 525–527. https://doi.org/10.1038/364525a0
  96. Wiltschko W., Wiltschko R. Magnetic compass of European robins. Science. 1972. V. 176 (4030). P. 62–64. https://doi.org/10.1126/science.176.4030.62
  97. Wiltschko W., Wiltschko R. Migratory orientation of European Robins is affected by the wavelength of light as well as by a magnetic pulse. J. Comp. Physiol. A. 1995. V. 177 (3). P. 363–369. https://doi.org/10.1007/BF00192425
  98. Wiltschko W., Wiltschko R. The effect of yellow and blue light on magnetic compass orientation in European Robins, Erithacus rubecula. J. Comp. Physiol. A. 1999. V. 184 (3). P. 295–299. https://doi.org/10.1007/s003590050327
  99. Wiltschko W., Wiltschko R. Light-dependent magnetoreception in birds: the behaviour of European robins, Erithacus rubecula, under monochromatic light of various wavelengths and intensities. J. Exp. Biol. 2001. V. 204(19). P. 3295–3302. https://doi.org/10.1242/jeb.204.19.3295
  100. Wiltschko W., Wiltschko R., Munro U. Light-dependent magnetoreception in birds: the effect of intensity of 565 nm green light. Naturwissenschaften. 2000. V. 87(8). P. 366–369. https://doi.org/10.1007/s001140050742
  101. Wingstrand K.G., Munk O. The pectin oculi of the pigeon with particular regard to its function. Biol. Skr. Danske Viden. Selsk. (Copenhagen) 1965. V. 14. P. 1–64.
  102. Woodcock M.E., Idoko-Akoh A., McGrew M. J. Gene editing in birds takes flight. Mammalian Genome. 2017. V. 28 (7). P. 315–323. https://doi.org/10.1007/s00335-017-9701-z
  103. Worster S., Mouritsen H., Hore P.J. A light-dependent magnetoreception mechanism insensitive to light intensity and polarization. J. Royal society interface. 2017. V. 14 (134). P. 20170405. https://doi.org/10.1098/rsif.2017.0405
  104. Wu H., Scholten A., Einwich A., Mouritsen H., Koch K.W. Protein-protein interaction of the putative magnetoreceptor cryptochrome 4 expressed in the avian retina. Scientific reports, 2020. V. 10 (1). P. 1–13. https://doi.org/10.1038/s41598-020-64429-y
  105. Xu J., Jarocha L.E., Zollitsch T., Konowalczyk M., Henbest K.B., et al. Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature 2021. V. 594. P. 535–540. https://doi.org/10.1038/s41586-021-03618-9
  106. Zapka M., Heyers D., Hein C.M., Engels S., Schneider N.-L., Hans J., Weiler S., Dreyer D., Kishkinev D., Wild M., Mouritsen H. Visual, but not trigeminal, mediation of magnetic compass information in a migratory bird. Nature. 2009. V. 461 (7268). P. 1274–1277. https://doi.org/10.1038/nature08528
  107. Zoltowski B.D., Chelliah Y., Wickramaratne A., Jarocha L., Karki N., Xu W., Takahashi J. S. Chemical and structural analysis of a photoactive vertebrate cryptochrome from pigeon. PNAS. 2019. V. 116 (39). P. 19449–19457. https://doi.org/10.1073/pnas.190787511

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (285KB)

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies