Characteristics of the Fatty Acid Composition of the Vacuolar Membrane Lipids Under the Conditions of Stress Induced by Copper Ions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effect of different concentrations of copper ions (100 and 500 µM) on the fatty acid composition of the vacuolar membrane lipids of beet root tissues (Beta vulgaris L.) was studied. Exposure to 100 μM copper led to an increase in the content of FAs by 57 μg/mg of total lipids as compared to the control. Stearoyl desaturase (SDR) activity decreased from 0.87 in the control to 0.77 at 100 μM copper. Exposure to 500 μM copper caused an increase in the SDR activity up to 0.93, but the proportion of FAs decreased by 50 μg/mg of total lipids compared with 100 μM copper. In addition, there was an increase in the saturation of tonoplast lipids to 44 and 40% at 100 and 500 μM Cu²⁺, respectively. The results suggest that FAs of tonoplast lipids are involved in the stress response mechanisms induced by excessive Cu²⁺ concentrations.

全文:

受限制的访问

作者简介

I. Kapustina

Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences

Email: nichka.g@bk.ru
俄罗斯联邦, Irkutsk, 664033

V. Gurina

Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: nichka.g@bk.ru
俄罗斯联邦, Irkutsk, 664033

N. Ozolina

Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences

Email: nichka.g@bk.ru
俄罗斯联邦, Irkutsk, 664033

E. Spiridonova

Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences

Email: nichka.g@bk.ru
俄罗斯联邦, Irkutsk, 664033

参考

  1. Memon A.R., Schröder P. 2009. Implications of metal accumulation mechanisms to phytoremediation. Environ. Sci.Pollut. Res. Int. 16, 162–175.
  2. Chen G., Li J., Han H., Du R., Wang X. 2022. Physiological and molecular mechanisms of plant responses to copper stress. Int. J. Mol. Sci. 23, 12950.
  3. Leng X., Mu Q., Wang X., Li X., Zhu X., Shangguan L., Fang J. 2015. Transporters, chaperones, and P-type ATPases controlling grapevine copper homeostasis. Funct. Integr. Genom. 15, 673–684.
  4. Mir A.R., Pichtel J., Hayat S. 2021. Copper: Uptake, toxicity and tolerance in plants and management of Cu-contaminated soil. Biometals. 34, 737–759.
  5. González-Mendoza D., Gil F.E., Escoboza-Garcia F., Santamaría J.M., Zapata-Perez O. 2013. Copper stress on photosynthesis of black mangle (Avicennia germinans). An. Acad. Bras. Cienc. 85, 665–670.
  6. Sharma S.S., Dietz K.J., Mimura T. 2016. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant Cell Environ. 39 (5), 1112–1126.
  7. Нурминский В.Н., Ракевич А.Л., Мартынович Е.Ф., Озолина Н.В., Нестеркина И.С., Колесникова Е.В., Пилипченко А.А., Саляев Р.К., Чернышов М.Ю. 2015. Особенности структуры вакуоли растительной клетки, выявленные с помощью конфокальной микроскопии. Цитология. 57 (6), 443–451.
  8. Ozolina N.V., Gurina V.V, Nesterkina I.S., Nurminsky V.N. 2020. Variations in the content of tonoplast lipids under abiotic stress. Planta. 251 (6), 107.
  9. Саляев Р.К., Кузеванов В.Я., Хаптагаев С.Б., Копытчук В.Н. 1981. Выделение и очистка вакуолей и вакуолярных мембран из клеток растений. Физиол. растений. 28, 1295–1305.
  10. Folch J., Sloan Stanley G.H., Lees M. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509.
  11. Christie W.W. 1993. Preparation of ester derivatives of fatty acids for chromatographic analysis. Adv. Lipid Methodol. 2, 69–111.
  12. Нохсоровa В.В., Дударева Л.В., Петров К.А. 2020. Сезонная динамика липидов и их жирных кислот в почка Betula pendula Roth и Alnus alnobetula subsp. fruticosa (Rupr.) Raus в условиях криолитозоны. Физиол. раст. 67 (3), 319–328.
  13. Гланц С. 1999. Медико-биологическая статистика. М.: Практика. 459 с.
  14. Shahid M., Pourrut B., Dumat C. Nadeem M., Aslam M., Pinelli E. 2014. Heavy-metal-induced reactive oxygen species: Phytotoxicity and physiochemical changes in plants. Rev. Environ. Contamin. Toxicol. 232, 1–44.
  15. Yu L., Zhou C., Fan J., Shanklin J., Xu C. 2021. Mechanisms and functions of membrane lipid remodeling in plants. Plant J. 107 (1), 37–53.
  16. Halim N.F.A.A., Ali M.S.M., Leow A.T.C., Rahman R.N.Z.R.A. 2022. Membrane fatty acid desaturase: Biosynthesis, mechanism, and architecture. App. Microbiol. Biotechnol. 106 (18), 5957–5972.
  17. Ковалевская Н.П. 2023. Влияние ауксина на жирнокислотный состав и активность ацил-липидных десатураз в проростках яровой пшеницы Triticum aestivum L. Биол. мембраны. 40 (1), 71–80.
  18. Жуков А.В. 2015. Пальмитиновая кислота и ее роль в строении и функциях мембран растительной клетки. Физиол. раст. 62 (5), 751–760.
  19. Chaffai R., Seybou T.N., Marzouk B., Ferjani E.El. 2009. A comparative analysis of fatty acid composition of root and shoot lipids in Zea mays under copper and cadmium stress. Acta Biol. Hungar. 60 (1), 109–125.

版权所有 © The Russian Academy of Sciences, 2024
##common.cookie##