Physicochemical Features of Thrombin Binding to Platelet Membrane

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Thrombin is a key enzyme of the blood coagulation system, which has been actively studied since the beginning of the last century. The formation of thrombin from prothrombin in the area of vessel injury leads not only to the formation of fibrin – an important structural component of the hemostatic clot – but also to the activation of platelets, endothelium and immune system cells. The binding of thrombin to the platelet surface is thought to play a critical role in the process of platelet activation and may also ensure the maintenance of a high concentration of thrombin within the thrombus due to the concentration of protease on the platelet surface. To date, all major thrombin receptors on platelets have been thoroughly characterized: through various experimental methods, the physicochemical parameters of the corresponding intermolecular interactions have been established. Since the interaction of thrombin with platelets leads to their activation, which includes changes in the number of receptors as a result of granule secretion, the interpretation of the observed kinetic binding curves faces a number of difficulties. It is known that some receptors as a result of platelet activation are able to redistribute on the membrane and form dimers and clusters, which makes the kinetics of thrombin binding to platelets an extremely complex process depending on many factors, such as activator concentrations, platelet state, and other local parameters of the system. This review aims to describe the current understanding of the interaction of thrombin with the platelet membrane and to outline important unresolved issues in this area of research. The survey provides not only information on structural and kinetic features of thrombin binding to individual platelet membrane proteins, but also analyzes the relationship between the relevant interaction parameters and previously obtained data on the integral kinetics of protease binding to the platelet surface.

全文:

受限制的访问

作者简介

R. Kerimov

Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences

Email: ne4ipur@gmail.com
俄罗斯联邦, Moscow, 109029

D. Nechipurenko

Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences; Faculty of Physics, Lomonosov Moscow State University; National Medical Research Center of Children’s Hematology, Oncology and Immunology named after D. Rogachev

编辑信件的主要联系方式.
Email: ne4ipur@gmail.com
俄罗斯联邦, Moscow, 109029; Moscow, 119991; Moscow, 117997

M. Panteleev

Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences; Faculty of Physics, Lomonosov Moscow State University; National Medical Research Center of Children’s Hematology, Oncology and Immunology named after D. Rogachev

Email: ne4ipur@gmail.com
俄罗斯联邦, Moscow, 109029; Moscow, 119991; Moscow, 117997

参考

  1. Michelson A.D., Cattaneo M., Frelinger A., Newman P. 2019. Platelets. 4th Edition. Academic Press. Elsevier, p. 169–221, 243–257.
  2. Wright J.H., Minot G.R. 1917. The viscous metamorphosis of the blood platelets. J. Exp. Med. 26, 395–409.
  3. Harter K., Levine M., Henderson S.O. 2015. Anticoagulation drug therapy: A review. West J. Emerg. Med. 16 (1), 11–17.
  4. Workman E.F. Jr., White G.C. II, Lundblad R.L. 1977. High affinity binding of thrombin to platelets. Inhibition by tetranitromethane and heparin. Biochem. Biophys. Res. Commun. 75, 925–932.
  5. White G.C., Lundblad R.L., Griffith M.J. 1981. Structure–function relations in platelet–thrombin reactions. Inhibition of platelet–thrombin interactions by lysine modification. J. Biol. Chem. 256, 1763–1766.
  6. Tollefsen D.M., Feagler J.R., Majerus P.W. 1974. The binding of thrombin to the surface of human platelets. J. Biol. Chem. 249 (8), 2646–2651.
  7. Tollefsen D.M., Majerus P.W. 1976. Evidence for a single class of thrombin-binding sites on human platelets. Biochemistry. 15, 2144–2149.
  8. Shuman M.A., Tollefsen D.M., Majerus P.W. 1976. The binding of human and bovine thrombin to human platelets. Blood. 47, 43–54.
  9. Martin B.M., Wasiewski W.W., Fenton J.W., Detwiler T.C. 1976. Equilibrium binding of thrombin to platelets. Biochemistry. 15 (22), 4886–4893.
  10. Mustard J.F., Kinlough-Rathbone R.L., Packham M.A. 2002. History of platelets. Platelets in thrombotic and non-thrombotic disorders. Pathophysiology, pharmacology, and therapeutics. Cambridge University Press, p. 3–24.
  11. De Marco L., Mazzucato M., Masotti A., Ruggeri Z.M. 1994. Localization and characterization of an alpha-thrombin-binding site on platelet glycoprotein Ib alpha. J. Biol. Chem. 269 (9), 6478–6484.
  12. Gralnick H.R., Williams S., McKeown L.P., Hansmann K., Fenton J.W. 2nd, Krutzsch H. 1994. High-affinity alpha-thrombin binding to platelet glycoprotein Ib alpha: Identification of two binding domains. Proc. Natl. Acad. Sci. USA. 91 (14), 6334–6338.
  13. Steck T., Wallach D. 1965. The binding of kidney-bean phytohemagglutinin by Ehrlich ascites carcinoma. Biochim. Biophys. Acta. 97 (3), 510–522.
  14. Lundblad R.L., White G.C. 2005. The interaction of thrombin with blood platelets. Platelets. 16 (7), 373–375.
  15. Okumura T., Jamieson G.A. 1976. Platelet glycocalicin: A single receptor for platelet aggregation induced by thrombin or ristocetin. Thromb. Res. 8,701–706.
  16. Burkhart J.M., Vaudel M., Gambaryan S. 2012. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood. 120, e73–e82.
  17. Harmon J.T., Jamieson G.A. 1985. Thrombin binds to a high-affinity approximately 900,000-dalton site on human platelets. Biochemistry. 24, 58–64.
  18. Mazzucato M., Marco L.D., Masotti A., Pradella P., Bahou W.F., Ruggeri Z.M. 1998. Characterization of the initial alpha-thrombin interaction with glycoprotein Ib alpha in relation to platelet activation. J. Biol. Chem. 273, 1880–1887.
  19. Dörmann D., Clemetson K.J., Kehrel B.E. 2000. The GPIbα thrombin-binding site is essential for thrombin-induced platelet procoagulant activity. Blood. 96.(7), 2469–2478.
  20. Rivera J., Lozano M.L., Navarro-Núñez L., Vicente V. 2009. Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica. 94, 700–711.
  21. De Cristofaro R., De Candia E., Landolfi R., Rutella S., Hall S.W. 2001. Structural and functional mapping of the thrombin domain involved in the binding to the platelet glycoprotein Ib. Biochemistry. 40, 13268–13273.
  22. Clemetson K.J., Clemetson J.M. 1995. Platelet GPIbα–V–IX complex. Structure, function, physiology, and pathology. Semin. Thromb. Hemost. 21, 130–136.
  23. Zarpellon A., Celikel R., Roberts J.R., McClin-tock R.A., Mendolicchio G.L., Moore K.L., Jing H., Varughese K.I., Ruggeri Z.M. 2011. Binding of α-thrombin to surface-anchored platelet glycoprotein Ibα sulfotyrosines through a two-site mechanism involving exosite I. Proc. Natl. Acad. Sci. USA. 108 (21), 8628–8633.
  24. Ruggeri Z.M., Zarpellon A., Roberts J.R., McClintock R.A., Jing H., Mendolicchio G.L. 2010. Unraveling the mechanism and significance of thrombin binding to platelet glycoprotein Ib.J. Thromb. Haemost. 104 (5), 894–902.
  25. Hayes K.L., Tracy P.B. 1999. The platelet high-affinity binding site for thrombin mimics hirudin, modulates thrombin-induced platelet activation, and is distinct from the glycoprotein Ib–IX–V complex. J. Biol. Chem. 274 (2), 972–980.
  26. Vu T.K., Hung D.T., Wheaton V.I., Coughlin S.R. 1991. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 64, 1057–1068.
  27. De Candia E. 2012. Mechanisms of platelet activation by thrombin: A short history. Thromb. Res. 129 (3), 250–256.
  28. Kahn M.L., Nakanishi-Matsui M., Shapiro M.J., Ishihara H., Coughlin S.R. 1999. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J. Clin. Invest. 103 (6), 879–887.
  29. Coughlin S.R. 1999. How the protease thrombin talks to cells. Proc. Natl. Acad. Sci. USA. 96, 11023–11027.
  30. Brass L.F., Vassallo R.R. Jr., Belmonte E., Ahuja M., Cichowski K., Hoxie J.A. 1992. Structure and function of the human platelet thrombin receptor. Studies using monoclonal antibodies directed against a defined domain within the receptor N terminus. J. Biol. Chem. 267, 13795–13798.
  31. Andersen H., Greenberg D.L., Fujikawa K., Xu W., Chung D.W., Davie E.W. 1999. Protease-activated receptor 1 is the primary mediator of thrombin-stimulated platelet procoagulant activity (clotting, phospholipid, annexin V, calcium flux). Proc. Natl. Acad. Sci. USA. 96, 11189–11193.
  32. Heuberger D.M., Schuepbach R.A. 2019. Protease-activated receptors (PARs): Mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thrombosis J. 17, 4.
  33. Gandhi P.S., Chen Z., Appelbaum E., Zapata F., Di Cera E. 2011. Structural basis of thrombin–protease–activated receptor interactions. Life. 63 (6), 375–382.
  34. Nieman M.T., Schmaier A.H. 2007. Interaction of thrombin with PAR1 and PAR4 at the thrombin cleavage site. Biochemistry. 46 (29), 8603–8610.
  35. Vu T.K., Wheaton V.I., Hung D.T., Charo I., Coughlin S.R. Domains specifying thrombin-receptor interaction. 1991. Nature. 353, 674–677.
  36. Xu W.F., Andersen H., Whitmore T.E., Presnell S.R., Yee D.P., Ching A., Gilbert T., Davie E.W., Foster D.C. 1998. Cloning and characterization of human protease-activated receptor 4. Proc. Natl. Acad. Sci. USA. 95, 6642–6646.
  37. Coughlin S.R. 2005. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J. Thromb. Haemost. 3, 1800–1814.
  38. Boknäs N., Faxälv L., Centellas D.S., Wallstedt M., Ramström S., Grenegård M., Lindahl T.L. 2014. Thrombin-induced platelet activation via PAR4: Pivotal role for exosite II. Thromb. Haemost. 112, 558–565.
  39. Covic L., Gresser A.L., Kuliopulos A. 2000. Biphasic kinetics of activation and signaling for PAR1 and PAR4 thrombin receptors in platelets. Biochemistry. 39, 5458–5467.
  40. Ramakrishnan V., DeGuzman F., Bao M., Hall S.W., Leung L.L., Phillips D.R. 2001. A thrombin receptor function for platelet glycoprotein Ib-IX unmasked by cleavage of glycoprotein V. Proc. Natl. Acad. Sci. USA. 98 (4), 1823–1828.
  41. Jamieson G.A., Okumura T. 1978. Reduced thrombin binding and aggregation in Bernard–Soulier platelets. J. Clin. Invest. 61, 861–864.
  42. Milligan G., Smith N.J. 2007. Allosteric modulation of heterodimeric G-protein coupled receptors. Trends Pharmacol. Sci. 28, 615–620.
  43. Arachiche A., Mumaw M.M., de la Fuente M., Nieman M.T. 2013. Protease-activated receptor 1 (PAR1) and PAR4 heterodimers are required for PAR1-enhanced cleavage of PAR4 by α-thrombin. J. Biol. Chem. 288 (45), 32553–32562.
  44. Ozaki Y., Suzuki-Inoue K., Inoue O. 2013. Platelet receptors activated via mulitmerization: Glycoprotein VI, GPIbα-IX–V, and CLEC-2. J. Thromb. Haemost. 11 (Suppl. 1), 330–339.
  45. De Candia E., Hall S.W., Rutella S., Landolfi R., Andrews R.K., De Cristofaro R. 2001. Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of Par-1 on intact platelets. J. Bio.l Chem. 276 (7), 4692–4698.
  46. Estevez B., Kim K., Delaney M.K., Stojanovic-Terpo A., Shen B., Ruan C., Cho J., Ruggeri Z.M., Du X. 2016. Signaling-mediated cooperativity between glycoprotein Ib-IX and protease-activated receptors in thrombin-induced platelet activation. Blood. 127 (5), 626–636.
  47. Yaping Z., Samuel M.E., Cheng Z., Xiaoping D. 2022. Signaling mechanisms of the platelet glycoprotein Ib–IX complex. Platelets. 33 (6), 823–832.
  48. Nieman M.T. 2016. Protease-activated receptors in hemostasis. Blood. 128 (2), 169–177.
  49. Shrimpton C.N., Borthakur G., Larrucea S., Cruz M.A., Dong J.F., López J.A. 2002. Localization of the adhesion receptor glycoprotein Ib–IX–V complex to lipid rafts is required for platelet adhesion and activation. J. Exp. Med. 196 (8), 1057–1066
  50. Komatsuya K., Kaneko K., Kasahara K. 2020. Function of platelet glycosphingolipid microdomains/lipid rafts. Int. J. Mol. Sci. 21 (15), 5539–5556.
  51. Megalinskiy A.D., Loginova V.M., Shibeko A.M, Ataullakhanov F.I., Panteleev M.A., Nechipurenko D.Y. 2022. The role of immobilized phospholipids in the initiation of blood coagulation under flow conditions. Biochem. (Moscow) Suppl. Ser. A, Membr. Cell Biol. 16, 38–48.

补充文件

附件文件
动作
1. JATS XML
2. Fig.1

下载 (147KB)
3. Fig.2

下载 (219KB)
4. Fig.3

下载 (208KB)

版权所有 © The Russian Academy of Sciences, 2024
##common.cookie##