Influence of Low-Intense Laser Radiation He-Ne Laser on the Composition and Content of Phospholipids and Sterols in the Tissue of Wheat (Тriticum aestivum L.) Callus Tissues

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Using chromatography-mass spectrometry and thin-layer chromatography, the effect of irradiation with He-Ne laser light on the composition and content of cell membrane components – phospholipids and sterols – in wheat callus tissues was studied. It was shown that irradiation of callus with laser light at a dose of 3.6 J/cm2 led to significant changes in the content of these components. Thus, the content of phosphatidylinositol increased in irradiated callus by 8 times, phosphatidylethonolamine by 2 times, the content of phosphatidic acid decreased by 20% of the sum of phospholipids. For sterols, it was established that irradiation caused the most significant changes in the content of β-sitosterol, which is dominant in plants (an increase from 1453 ± 170 μg/g of dry weight in the non-irradiated control to 2001 ± 112 μg/g of dry weight 1 h after exposure) and, due to this, in the total content of sterols. Analysis of the results obtained suggests that phospholipids and sterols, primarily those for which regulatory and signaling functions are known, are involved in the response of plant tissue to exposure to low-intensity laser radiation from a He-Ne laser. This participation is realized as a stressful (nonspecific) response to intense radiation.

Толық мәтін

Рұқсат жабық

Авторлар туралы

L. Dudareva

Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch of the Russian Academy of Sciences

Email: rudal69@mail.ru
Ресей, 664032, Irkutsk

E. Rudikovskaya

Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: rudal69@mail.ru
Ресей, 664032, Irkutsk

N. Semenova

Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch of the Russian Academy of Sciences

Email: rudal69@mail.ru
Ресей, 664032, Irkutsk

A. Rudikovskii

Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch of the Russian Academy of Sciences

Email: rudal69@mail.ru
Ресей, 664032, Irkutsk

V. Shmakov

Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch of the Russian Academy of Sciences

Email: rudal69@mail.ru
Ресей, 664032, Irkutsk

Әдебиет тізімі

  1. Kreslavski V.D., Carpentier R., Klimov V.V., Allakhverdiev S.I. 2009. Transduction mechanisms of photoreceptor signals in plant cells. J. Photochem. Photobiol. C: Photochem. Rev. 10, 63–80.
  2. Kreslavski V.D., Fomina I.R., Los D.A., Carpentier R., Kuznetsov V.V., Allakhverdiev S.I. 2012. Red and near infra-red signaling: Hypothesis and perspectives. J. Photochem. Photobiol. 13, 190–203. https://doi.org/10.1016/j.jphotochemrev.2012.01.002
  3. Demotes-Mainard S., Péron T., Corot A., Bertheloot J., Gourrierec J.L., Pelleschi-Travier S., Crespel L., Morel P., Huché-Thélier L., Boumaza R., Vian A., Guérin V., Leduc N., Sakr S. 2016. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 121, 4–21. https://doi.org/10.1016/j.envexpbot.2015.05.010
  4. Huché-Thélier L., Crespel L., Gourrierec J.L., Morel P., Sakr S., Leduc N. 2016. Light signaling and plant responses to blue and UV radiations – Perspectives for applications in horticulture. Environ. Exp. Bot. 121, 22–38. https://doi.org/10.1016/j.envexpbot.2015.06.009
  5. Cavallaro V., Pellegrino A., Muleo R., Forgione I. 2022. Light and plant growth regulators on in vitro proliferation. Plants. 11 (7), 844. https://doi.org/10.3390/plants11070844
  6. Саляев Р.К., Дударева Л.В., Ланкевич С.В., Сумцова В.М. 2001. Влияние низкоинтенсивного когерентного излучения на морфогенетические процессы в каллусной культуре пшеницы. ДАH. 376, 830–832.
  7. Саляев Р.К., Дударева Л.В., Ланкевич С.В., Сумцова В.М. 2001. Влияние низкоинтенсивного когерентного излучения на каллусогенез у дикорастущих злаков. ДАН. 379, 819–820.
  8. Hernández-Aguilar C., Dominguez P.A., Cruz O.A., Ivanov R., Carballo C.A., Zepeda B.R. 2010. Laser in agriculture. Int. Agrophys. 24, 407–422.
  9. Gao L., Li Y-F., Z. Shen Z., Han R. 2018. Responses of He-Ne laser on agronomic traits and the crosstalk between UVR8 signaling and phytochrome B signaling pathway in Arabidopsis thaliana subjected to supplementary ultraviolet-B (UV-B) stress. Protoplasma. 255 (3), 761–771. https://doi.org/10.1007/s00709–017–1184-y
  10. Klimek-Kopyra A., Czech T. 2022. Complementary photostimulation of seeds and plants as an effective tool for increasing crop productivity and quality in light of new challenges facing agriculture in the 21st century – A case study. Plants. 11, 1649. https://doi.org/10.3390/plants11131649
  11. Klimek-Kopyra A., Neugschwandtner R.W., Ślizowska A., Kot D., Dobrowolski J.W., Pilch Z., Dacewicz E. 2022. Pre-sowing laser light stimulation increases yield and protein and crude fat contents in soybean. Agriculture. 12, 1510. https://doi.org/10.3390/agriculture12101510
  12. Korrani M.F., Amooaghaie R., Ahadi A. 2023. He–Ne laser enhances seed germination and salt acclimation in Salvia officinalis seedlings in a manner dependent on phytochrome and H2O2. Protoplasma. 260, 103–116. https://doi.org/10.1007/s00709–022–01762–1
  13. Swathy P.S., Kiran K.R., Joshi M.B., Mahato K.K., Muthusamy A. 2021. He–Ne laser accelerates seed germination by modulating growth hormones and reprogramming metabolism in brinjal. Sci. Rep. 11, 7948. https://doi.org/10.1038/s41598–021–86984–8
  14. Саляев P.К., Дударева Л.В., Ланкевич С.В., Екимова Е.Г., Сумцова В.М. 2003. Влияние низкоинтенсивного лазерного излучения на процессы перекисного окисления липидов в культуре ткани пшеницы. Физиол. растений. 50 (4), 498–500.
  15. Озолина Н.В., Прадедова Е.В., Дударева Л.В., Саляев Р.К. 1997. Влияние низкоинтенсивного лазерного излучения на гидролитическую активность протонных насосов вакуолярной мембраны. Биол. мембраны. 14, 125–127.
  16. Саляев Р.К., Дударева Л.В., Ланкевич С.В., Макаренко С.П., Сумцова В.М., Рудиковская Е.Г. 2007. Влияние низкоинтенсивного лазерного излучения на химический состав и структуру липидов в культуре ткани пшеницы. ДАН. 412 (3), 422–423.
  17. Дударева Л.В., Рудиковская Е.Г., Шмаков В.Н. 2014. Влияние низкоинтенсивного излучения гелий-неонового лазера на жирнокислотный состав каллусных тканей пшеницы (Triticum aestivum L.). Биол. мембраны. 31 (5), 364–370. https://doi.org/10.7868/S0233475514050041&
  18. Dudareva L., Tarasenko V., Rudikovskaya E. 2020. Involvement of photoprotective compounds of a phenolic nature in the response of Arabidopsis thaliana leaf tissues to low‐intensity laser radiation. Photochem. Photobiol. 96 (6), 1243–1250. https://doi.org/10.1111/php.13289
  19. Hou Q., Ufer G., Bartels D. 2016. Lipid signalling in plant responses to abiotic stress. Plant, Cell and Environ. 39, 1029–1048. https://doi.org/10.1111/pce.12666
  20. Munnik T., Irvine R.F., Musgrave A. 1998. Phospholipid signalling in plants. Biochim. Biophys. Acta. 1389, 222–272.
  21. Los D.A., Mironov K.S., Allakhverdiev S.I. 2013. Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth. Res. 343, 489–509.https://doi.org/10.1007/s11120–013–9823–4
  22. Cassim A.M., Mongrand S. 2019. Lipids light up in plant membranes. Nat. Plants. 5, 913–914. https://doi.org/10.1038/s41477–019–0494–9
  23. Жуков А.В. 2021. О качественном составе липидов мембран растительных клеток. Физиол. растений. 68 (2), 206–224. https://doi.org/10.31857/S001533032101022X
  24. Berg J.M., Tymoczko J.L., Stryer L. 2002. Biochemistry. 5th edition. New York: W.H. Freeman. 1050 p. https://doi.org/www.ncbi.nlm.nih.gov/books/NBK22361
  25. Reszczyńska E., Hanaka A. 2020. Lipids composition in plant membranes. Cell Biochem. Biophys. 78, 401–414.https://doi.org/10.1007/s12013–020–00947-w
  26. Klyachko-Gurvich G.L., Tsoglin L.N., Doucha J., Kopetskii J., Ryabykh I.B.S., Semenenko V.E. 1999. Desaturation of fatty acids as an adaptive response to shifts in light intensity. Physiol. Plant. 107, 240–249. https://doi.org/10.1034/j.1399–3054.1999.100212.x
  27. Ruelland E., Kravets V., Derevyanchuk M., Martinecc J., Zachowski A., Pokotylo I. 2015. Role of phospholipid signalling in plant environmental responses. Envir. Exp. Bot. 114, 129–143. https://doi.org/10.1016/j.envexpbot.2014.08.009
  28. Heilmann I. 2016. Plant phosphoinositide signaling – dynamics on demand. Biochim. Biophys. Acta – Mol. Cell Biol. Lipids. 1861 (9), 1345–1351. https://doi.org/10.1016/j.bbalip.2016.02.013
  29. Lim G.H., Singhal R., Kachroo A., Kachroo P. 2017. Fatty acid- and lipid-mediated signaling in plant defense. Ann. Rev. Phytopathol. 55, 505–536. https://doi.org/10.1146/annurev-phyto-080516–035406
  30. Pokotylo I., Kravets V., Martinecc J., Ruelland E. 2018. The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants. Prog. Lipid Res. 71, 43–53. https://doi.org/10.1016/j.plipres.2018.05.003
  31. Rogowska A., Szakiel A. 2020. The role of sterols in plant response to abiotic stress. Phytochem. Rev. 19, 1525–1538. https://doi.org/10.1007/s11101–020–09708
  32. Lu J., Xu Y., Wang J., Singer S.D., Chen G. 2020. The role of triacylglycerol in plant stress response. Plants. 9, 472. https://doi.org/10.3390/plants9040472
  33. Banerjee A., Roychoudhury A. 2016. Plant responses to light stress: Oxidative damages, photoprotection, and role of phytohormones. In: Plant Hormones under Challenging Environmental Factors. Eds. Ahammed G., Yu J.Q. Dordrecht: Springer, p. 181–213. https://doi.org/10.1007/978–94–017–7758–2_8
  34. Pascual J., Rahikainen M., Kangasjärvi S. 2017. Plant light stress. eLS. 1–6. https://doi.org/10.1002/9780470015902.a0001319. pub3
  35. Roeber V.M., Bajaj I., Rohde M., Schmulling T., Cortleven A. 2021. Light acts as a stressor and influences abiotic and biotic stress responses in plants. Plant Cell Environ. 44 (3), 645–664. https://doi.org/10.1111/pce.13948
  36. Schaller H. 2003. The role of sterols in plant growth and development. Prog. Lipid Res. 42 (3), 163–75. https://doi.org/10.1016/s0163–7827(02)00047–4
  37. Валитова Ю.Н., Сулкарнаева А.Г., Минибаева Ф.В. 2016. Растительные стерины: многообразие, биосинтез, физиологические функции. Биохимия. 81 (8), 1050–1068. https://doi.org/10.1134/S0006297916080046
  38. Bligh E.C., Dyer W.J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917.
  39. Vaskovsky V.E., Latyshev N.A. 1975. Modified Jungnickel’s reagent for detecting phospholipids and other phosphorus compounds on thin-layer chromatograms. J. Chromatog. 115, 246–249.
  40. Kates M. 1986. Techniques of lipidology: Isolation, analysis and identification of lipids. 2 ed. Amsterdam-NY-Oxford: Elsevier. 464 p.
  41. Einspahr K.J., Peeler T.C., Thompson G.A. Jr. 1988. Rapid changes in polyphosphoinositide metabolism associated with the response of Dunaliella salina to hypoosmotic shock. J. Biol. Chem. 263, 5775–5779.
  42. Meijer H.J.G., Munnik T. 2003. Phospholipid-based signaling in plants. Ann. Rev. Plant Biol. 54, 265–306. https://doi.org/10.1146/annurev.arplant.54.031902.134748
  43. Prabha T.N., Raina P.L., Patwardhan M.V. 1988. Lipid profile of cultured cells of apple (Malus sylvestris) and apple tissue. J. Biosci. 13 (1), 33–38.
  44. Welchen E., Canal M.V., Gras D.E., Gonzalez D.H. 2021. Cross-talk between mitochondrial function, growth, and stress signaling pathways in plants. J. Exp. Bot. 72 (11), 4102–4118. https://doi.org/10.1093/jxb/eraa608
  45. Yu Y., Kou M., Gao Z., Liu Y., Xuan Y., Liu Y., Tang Z., Cao Q., Li Z., Sun J. 2019. Involvement of phosphatidylserine and triacylglycerol in the response of sweet potato leaves to salt stress. Front. Plant Sci. 10, 1086–1092. https://doi.org/10.3389/fpls.2019.01086
  46. Qiu Z., He Y., Zhang Y., Guo J., Wang L. 2018. Characterization of miRNAs and their target genes in He-Ne laser pretreated wheat seedlings exposed to drought stress. Ecotoxicol. Environ. Saf. 164, 611–617. https://doi.org/10.1016/j.ecoenv.2018.08.077
  47. Uemura M., Steponkus P.L. 1994. A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiol. 104, 479–496.
  48. Гордон Л.Х. 1992. Дыхательный газообмен и содержание структурных липидов в процессе роста каллусных клеток. Физиол. биохим. культ. растений. 24, 24–29.
  49. Huang L.S, Grunwald C. 1988. Effect of light on sterol changes in Medicago sativa. Plant Physiol. 88 (4), 1403–1406. https://doi.org/10.1104/pp.88.4.1403

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Phospholipid content in wheat callus tissues (T. aestivum) immediately (a), 1 (b) and 24 h (c) after HeNe laser irradiation with a dose of 3.6 J/cm2. Arithmetic mean values of five biological replicates and their standard deviations are given. The significance of differences was assessed using t-criterion (p < 0.05).

Жүктеу (375KB)
3. Fig. 2. Dynamics of changes in the content of free sterols in wheat callus tissues (T. aestivum) induced by HeNe laser irradiation with a dose of 3.6 J/cm2. Arithmetic averages of five biological replicates and their standard deviations are given. The reliability of differences was evaluated using t-criterion (p < 0.05).

Жүктеу (143KB)

© The Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>