Immunofluorescent Identification of GABAergic Structures in the Somatic Muscle of the Earthworm Lumbricus terrestris

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the immunofluorescence confocal microscopy, we detected the following GABAergic structures in the somatic muscle of the body wall of the earthworm: neurotransmitter gamma-aminobutyric acid (GABA); the enzyme responsible for synthesis of GABA, glutamate decarboxylase; type 1, 2, and 3 membrane transporters of GABA providing its reuptake; pre- and postsynaptic type A (ionotropic) and type B (metabotropic) GABA receptors. These structures are localized in the areas of cholinergic neuromuscular synapses. We assume that GABA can participate in modulation of motor activity of the earthworm somatic muscles both at pre- and postsynaptic levels of cholinergic neuromuscular synapses.

About the authors

L. F. Nurullin

Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of Sciences; Kazan State Medical University

Author for correspondence.
Email: lenizn@yandex.ru
Russia, 420111, Kazan; Russia, 420012, Kazan

N. D. Almazov

Kazan State Medical University

Email: euroworm@mail.ru
Russia, 420012, Kazan

E. M. Volkov

Kazan State Medical University

Author for correspondence.
Email: euroworm@mail.ru
Russia, 420012, Kazan

References

  1. Волков М.Е. 2012. Прижизненная окраска нервных образований флуоресцентными красителями и оптическое определение ацетилхолина в соматической мышце дождевого червя Lumbricus terrestris. Бюл. эксперим. биол. мед. 154 (7), 112–115.
  2. Волков Е.М., Сабирова А.Р., Нуруллин Л.Ф., Гришин С.К., Зефиров А.Л. 2006. Влияние ГАМКергических и адренергических препаратов на активность Na+/K+- насоса и котранспорта Cl– в соматических мышечных клетках дождевого червя Lumbricus terrestris. Бюл. эксперим. биол. мед. 141 (5), 572–574.
  3. Volkov E.M., Nurullin L.F., Volkov M.E., Nikolsky E.E., Vyskočil F. 2011. Mechanisms of carbacholine and G-ABA action on resting membrane potential and Na+/K+-ATPase of Lumbricus terrestris body wall muscles. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 158 (4), 520–524. https://doi.org/10.1016/j.cbpa.2010.12.016
  4. Malomouzh A.I., Petrov K.A., Nurullin L.F., Nikolsky E.E. 2015. Metabotropic GABAB receptors mediate GABA inhibition of acetylcholine release in the rat neuromuscular junction. J. Neurochem. 135 (6), 1149–1160. https://doi.org/10.1111/jnc.13373
  5. Parry L., Tanner A., Vinther J. 2014. The origin of annelids. Front. Palaeontology. 57 (6), 1091–1103. https://doi.org/10.1111/pala.12129
  6. Purschke G., Müller M.C.M. 2006. Evolution of body wall musculature. Integr. Comp. Biol. 46 (4), 497–507. https://doi.org/10.1093/icb/icj053
  7. Valtorta F., Pennuto M., Bonanomi D., Benfenati F. 2004. Synaptophysin: Leading actor or walk-on role in synaptic vesicle exocytosis? Bioessays. 26 (4), 445–453. https://doi.org/10.1002/bies.20012
  8. Kwon S.E., Chapman E.R. 2011. Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons. Neuron. 70 (5), 847–854. https://doi.org/10.1016/j.neuron.2011.04.001
  9. Krause M., Wernig A. 1985. The distribution of acetylcholine receptors in the normal and denervated neuromuscular junction of the frog. J. Neurocytol. 14 (5), 765–780. https://doi.org/10.1007/BF01170827
  10. Łątka K., Jończyk J., Bajda M. 2020. γ-Aminobutyric acid transporters as relevant biological target: Their function, structure, inhibitors and role in the therapy of different diseases. Int. J. Biol. Macromol. 158, 750–772. https://doi.org/10.1016/j.ijbiomac.2020.04.126
  11. Sallard E., Letourneur D., Legendre P. 2021. Electrophysiology of ionotropic GABA receptors. Cell. Mol. Life Sci. 78 (13), 5341–5370. https://doi.org/10.1007/s00018-021-03846-2
  12. Shaye H., Stauch B., Gati C., Cherezov V. 2021. Molecular mechanisms of metabotropic GABAB receptor function. Sci. Adv. 7 (22), eabg3362. https://doi.org/10.1126/sciadv.abg3362
  13. Araque A., Parpura V., Sanzgiri R.P., Haydon P.G. 1999. Tripartite synapses: Glia, the unacknowledged partner. Trends Neurosci. 22 (5), 208–215. https://doi.org/10.1016/S0166-2236(98)01349-6
  14. Melone M., Ciappelloni S., Conti F. 2014. Plasma membrane transporters GAT-1 and GAT-3 contribute to heterogeneity of GABAergic synapses in neocortex. Front. Neuroanat. 8 (72). https://doi.org/10.3389/fnana.2014.00072
  15. Angulo M.C., Le Meur K., Kozlov A.S., Charpak S., Audinat E. 2008. GABA, a forgotten gliotransmitter. Prog. Neurobiol. 86 (3), 297–303. https://doi.org/10.1016/j.pneurobio.2008.08.002
  16. Yoon B.E., Lee C.J. 2014. GABA as a rising gliotransmitter. Front. Neural Circuits. 8, 141. https://doi.org/10.3389/fncir.2014.00141
  17. Takács V.T., Cserép C., Schlingloff D., Pósfai B., Szőnyi A., Sos K.E., Környei Z., Dénes Á., Gulyás A.I., Freund T.F., Nyiri G. 2018. Co-transmission of acetylcholine and GABA regulates hippocampal states. Nat. Commun. 9 (1), 2848. https://doi.org/10.1038/s41467-018-05136-1
  18. Saunders A., Granger A.J., Sabatini B.L. 2015. Corelease of acetylcholine and GABA from cholinergic forebrain neurons. Elife. 27 (4), e06412. https://doi.org/10.7554/eLife.06412
  19. Padgett C.L., Slesinger P.A. 2010. GABAB receptor coupling to G-proteins and ion channels. Adv. Pharmacol. 58, 123–147. https://doi.org/10.1016/S1054-3589(10)58006-2
  20. Shen W., Slaughter M.M. 1999. Metabotropic GABA receptors facilitate L-type and inhibit N-type calcium channels in single salamander retinal neurons. J. Physiol. 516 (Pt 3), 711–718. https://doi.org/10.1111/j.1469-7793.1999.0711u.x
  21. Carter T.J., Mynlieff M. 2004. Gamma-aminobutyric acid type B receptors facilitate L-type and attenuate N-type Ca2+ currents in isolated hippocampal neurons. J. Neurosci. Res. 76 (3), 323–333. https://doi.org/10.1002/jnr.20085
  22. Chalifoux J.R., Carter A.G. 2011. GABAB receptor modulation of voltage-sensitive calcium channels in spines and dendrites. J. Neurosci. 31 (11), 4221–4232. https://doi.org/10.1523/JNEUROSCI.4561-10.2011
  23. Seagar M., Lévêque C., Charvin N., Marquèze B., Martin-Moutot N., Boudier J.A., Boudier J.L., Shoji-Kasai Y., Sato K., Takahashi M. 1999. Interactions between proteins implicated in exocytosis and voltage-gated calcium channels. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354 (1381), 289–297. https://doi.org/10.1098%2Frstb.1999.0380
  24. Gandini M.A., Zamponi G.W. 2022. Voltage-gated calcium channel nanodomains: Molecular composition and function. FEBS J. 289 (3), 614–633. https://doi.org/10.1111/febs.15759
  25. Catterall W.A. 2011. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol. 3 (8), a003947. https://doi.org/10.1101%2Fcshperspect.a003947
  26. Xue L., Zhang Z., McNeil B.D., Luo F., Wu X.S., Sheng J., Shin W., Wu L.G. 2012. Voltage-dependent calcium channels at the plasma membrane, but not vesicular channels, couple exocytosis to endocytosis. Cell Rep. 1 (6), 632–638. https://doi.org/10.1016/j.celrep.2012.04.011
  27. Волков М.Е., Волков Е.М., Нуруллин Л.Ф. 2012. Иммуноцитохимическая идентификация синаптотагмина 1, синтаксина 1, Ca2+-канала N-типа и Н-холинорецептора в двигательных нервно-мышечных синапсах соматической мышцы дождевого червя Lumbricus terrestris. Цитология. 54 (11), 847–852.
  28. Нуруллин Л.Ф., Волков Е.М. 2020. Иммунофлуоресцентная идентификация изоформ субъединицы α1 потенциал-зависимых Ca2+-каналов семейств CaV1, CaV2 и CaV3 в зонах холинергических синапсов соматической мускулатуры дождевого червя Lumbricus terrestris. Цитология. 62 (2), 141–148. https://doi.org/10.31857/S0041377120020042

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (1MB)
4.

Download (1MB)
5.

Download (904KB)

Copyright (c) 2023 The Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies