Targeting Liposomes Loaded with DNA Mimetics for the Directional Elimination of Tumor Cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article presents an innovative method for the targeted elimination of tumor cells of a certain molecular profile by inactivating the transcription of genes of common subunits of human RNA polymerases using complementary DNA mimetics delivered into cells inside liposomes modified on the outer surface with targeting molecules. It was shown that inactivation of genes of RNA polymerase common subunits Rpb5, Rpb6, or Rpb8 by the proposed method, depending on the chosen target, causes death of up to 50% of HER2-positive human breast cancer cells in culture.

About the authors

E. I. Shramova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: shramova.e.i@gmail.com
Russia, 117997, Moscow

G. M. Proshkina

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: shramova.e.i@gmail.com
Russia, 117997, Moscow

S. M. Deyev

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: shramova.e.i@gmail.com
Russia, 117997, Moscow; Russia, 119991, Moscow

References

  1. Werner F., Grohmann D. 2011. Evolution of multisubunit RNA polymerases in the three domains of life. Nat. Rev. Microbiol. 9, 85–98.
  2. Cuevas-Bermúdez A., Martínez-Fernández V., Garrido-Godino A.I., Navarro F. 2017. Subunits common to RNA polymerases. In: The Yeast Role in Medical Applications. Ed Abdulkhair W. M. H. London: IntechOpen, p. 151–165. https://doi.org/10.5772/intechopen.70936
  3. Zaros C., Briand J.F., Boulard Y., Labarre-Mariotte S., Garcia-Lopez M.C., Thuriaux P., Navarro F. 2007. Functional organization of the Rpb5 subunit shared by the three yeast RNA polymerases. Nucl. Acids Research. 35 (2), 634–647.
  4. Garrido-Godino A.I., Garcia-Lopez M.C., Navarro F. 2013. Correct assembly of RNA polymerase II depends on the foot domain and is required for multiple steps of transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 33, 3611–3626.
  5. Woychik N.A., Liao S.-M., Kolodziej P.A., Young R.A. 1990. Subunits shared by eukaryotic nuclear RNA polymerases. Genes Dev. 4, 313–323.
  6. Stahel R.A., Zangemeister-Wittke U. 2003. Antisense oligonucleotides for cancer therapy-an overview. Lung Cancer. 41 (Suppl 1), S81–S88.https://doi.org/10.1016/s0169-5002(03)00147-8
  7. Cohen J.S. 1993. Phosphorothioate oligonucleotides. In: Antisense Research and Applications. Eds Crooke S.T., Lebleu B. Florida: CRC Press, p. 205–223.
  8. Wengel J. 2001. LNA (locked nucleic acid). In: Antisense Drug Technology; Principles, Strategies, and Applications. Ed. Crooke, S.T. New York: Marcel Dekker, p. 339–357.
  9. Hagedorn P.H., Persson R., Funder E.D., Albæk N., Diemer S.L., Hansen D.J., Møller M.R., Papargyri N., Christiansen H., Hansen B.R., Hansen H.F., Jensen M.A., Koch T. 2018. Locked nucleic acid: Modality, diversity, and drug discovery. Drug Discov. Today. 23 (1), 101–114.
  10. Deyev S., Proshkina G., Baryshnikova O., Ryabova A., Avishai G., Katrivas L., Giannini C., Levi-Kalisman Y., Kotlyar A. 2018. Selective staining and eradication of cancer cells by protein-carrying DARPin-functionalized liposomes. Eur. J. Pharm. Biopharm. 130, 296–305.
  11. Shramova E.I., Shilova M.V., Ryabova A.V., Dzhalilova D.S., Zolotova N.A., Telegin G.B., Deyev S.M., Proshkina G.M. 2021. Barnase*Barstar-guided two-step targeting approach for drug delivery to tumor cells in vivo. J. Control. Release. 340, 200–208. https://doi.org/10.1016/j.jconrel.2021.11.001
  12. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65 (1–2), 55–63.
  13. Steiner D., Forrer P., Plückthun A. 2008. Efficient selection of DARPins with sub-nanomolar affinities using SRP phage display. J. Mol. Biol. 382 (5), 1211–1227. https://doi.org/10.1016/j.jmb.2008.07.085
  14. Shilova O., Shramova E., Proshkina G., Deyev S. 2021. Natural and designed toxins for precise therapy: Modern approaches in experimental oncology. Int. J. Mol. Sci. 22 (9), 4975. https://doi.org/10.3390/ijms22094975
  15. Tolmachev V.M., Chernov V.I., Deyev S.M. 2022. Targeted nuclear mediine. Seek and destroy. Russ. Chem. Rev. 91, RCR5034. https://doi.org/10.1070/RCR5034

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (58KB)

Copyright (c) 2023 The Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies