Astaxanthin prevents hydrogen peroxide-induced decrease in the viability of AC16 cardiomyocytes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of astaxanthin (5 and 10 μM), a xanthophyll carotenoid, on the viability of human cardiomyocytes AC16 under the cytotoxic action of 100 μM hydrogen peroxide was investigated. It was shown that the combined effect of these substances leads to an increase in the number of living cells and the mitotic activity index. It was found that under hydrogen peroxide-induced cytotoxicity astaxanthin promotes a decrease in the content of protein kinase R-like endoplasmic reticulum kinase (PERK), stimulator of endoplasmic reticulum stress and pro-apoptotic transcription factor C/BEP homologous protein (CHOP). Besides, in the conditions of hydrogen peroxide-induced cytotoxicity astaxanthin restored the expression of anti- and pro-apoptotic proteins of the Bcl-2 family. A protective effect of astaxanthin was revealed despite the toxic effect of hydrogen peroxide.

About the authors

A. I. Lomovsky

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: ovkres@mail.com
Pushchino, 142290 Russia

Yu. L. Baburina

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: ovkres@mail.com
Pushchino, 142290 Russia

Ya. V. Lomovskaya

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: ovkres@mail.com
Pushchino, 142290 Russia

R. R. Krestinin

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: ovkres@mail.com
Pushchino, 142290 Russia

L. D. Sotnikova

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Author for correspondence.
Email: ovkres@mail.com
Pushchino, 142290 Russia

O. V. Krestinina

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: ovkres@mail.com
Pushchino, 142290 Russia

References

  1. Di Cesare M., Perel P., Taylor S., Kabudula C., Bixby H., Gaziano T.A., McGhie D.V., Mwangi J., Pervan B., Narula J., Pineiro D., Pinto F.J. 2024. The heart of the world. Glob Heart. 19, 11. https://doi.org/10.5334/gh.1288
  2. Fassett R.G., Coombes J.S. 2012. Astaxanthin in cardiovascular health and disease. Molecules. 17, 2030–2048. https://doi.org/10.3390/molecules17022030
  3. Villaro S., Ciardi M., Morillas-Espana A., Sanchez-Zurano A., Acien-Fernandez G., Lafarga T. 2021. Microalgae derived astaxanthin: Research and consumer trends and industrial use as food. Foods. 10, 2303. https://doi.org/10.3390/foods10102303
  4. Jackson H., Braun C.L., Ernst H. 2008. The chemistry of novel xanthophyll carotenoids. Am. J. Cardiol. 101, 50D–57D. https://doi.org/10.1016/j.amjcard.2008.02.008
  5. Beutner S., Bloedorn B., Frixel S., Hernández Blanco I., Hoffmann T., Martin H.-D., Mayer B., Noack P., Ruck C., Schmidt M., Schülke I., Sell S., Ernst H., Haremza S., Seybold G., Sies H., Stahl W., Walsh R. 2001. Quantitative assessment of antioxidant properties of natural colorants and phytochemicals: carotenoids, flavonoids, phenols and indigoids. The role of β-carotene in antioxidant functions. J. Sci. Food Agric. 81, 559–568. https://doi.org/10.1002/jsfa.849
  6. Pashkow F.J., Watumull D.G., Campbell C.L. 2008. Astaxanthin: A novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am. J. Cardiol. 101, 58D–68D. https://doi.org/10.1016/j.amjcard.2008.02.010
  7. Baburina Y., Krestinin R., Odinokova I., Sotnikova L., Kruglov A., Krestinina O. 2019. Astaxanthin inhibits mitochondrial permeability transition pore opening in rat heart mitochondria. Antioxidants (Basel). 8, 576. https://doi.org/10.3390/antiox8120576
  8. Krestinin R., Baburina Y., Odinokova I., Kruglov A., Fadeeva I., Zvyagina A., Sotnikova L., Krestinina O. 2020. Isoproterenol-induced permeability transition pore-related dysfunction of heart mitochondria is attenuated by astaxanthin. Biomedicines. 8, 437. https://doi.org/10.3390/biomedicines8100437
  9. Krestinina O., Baburina Y., Krestinin R., Odinokova I., Fadeeva I., Sotnikova L. 2020. Astaxanthin prevents mitochondrial impairment induced by isoproterenol in isolated rat heart mitochondria. Antioxidants (Basel). 9, 262. https://doi.org/10.3390/antiox9030262
  10. Krestinin R., Kobyakova M., Baburina Y., Sotnikova L., Krestinina O. 2024. Astaxanthin protects against H2O2- and Doxorubicin-induced cardiotoxicity in H9c2 rat myocardial cells. Life (Basel). 14, 1409. https://doi.org/10.3390/life14111409
  11. Krestinin R., Kobyakova M., Y., B., Sotnikova L., Krestinina O. 2024. Astaxanthin reduces H2O2- and Doxorubicin-induced cardiotoxocity in H9c2 cardiomyocite cells. Biochemistry Moscow. 89, 1823–1833. https://doi.org/10.1134/S0006297924100122
  12. Liu Z., Lv Y., Zhao N., Guan G., Wang J. 2015. Protein kinase R-like ER kinase and its role in endoplasmic reticulum stress-decided cell fate. Cell Death Dis. 6, e1822. https://doi.org/10.1038/cddis.2015.183
  13. Nishitoh H. 2012. CHOP is a multifunctional transcription factor in the ER stress response. J. Biochem. 151, 217–219. https://doi.org/10.1093/jb/mvr143
  14. Liu L., Tang L., Luo J. M., Chen S.Y., Yi C.Y., Liu X.M., Hu C.H. 2024. Activation of the PERK-CHOP signaling pathway during endoplasmic reticulum stress contributes to olanzapine-induced dyslipidemia. Acta Pharmacol. Sin. 45, 502–516. https://doi.org/10.1038/s41401-023-01180-w
  15. Hirsch I., Weiwad M., Prell E., Ferrari D.M. 2014. ERp29 deficiency affects sensitivity to apoptosis via impairment of the ATF6-CHOP pathway of stress response. Apoptosis. 19, 801–815. https://doi.org/10.1007/s10495-013-0961-0
  16. Roufayel R. 2016. Regulation of stressed-induced cell death by the Bcl-2 family of apoptotic proteins. Mol. Membr. Biol. 33, 89–99. https://doi.org/10.1080/09687688.2017.1400600
  17. Chipuk J.E., Moldoveanu T., Llambi F., Parsons M.J., Green D.R. 2010. The BCL-2 family reunion. Mol. Cell. 37, 299–310. https://doi.org/10.1016/j.molcel.2010.01.025
  18. Litzkas P., Jha K.K., Ozer H.L. 1984. Efficient transfer of cloned DNA into human diploid cells: protoplast fusion in suspension. Mol. Cell. Biol. 4, 2549–2552. https://doi.org/10.1128/mcb.4.11.2549-2552.1984
  19. Davidson M.M., Nesti C., Palenzuela L., Walker W.F., Hernandez E., Protas L., Hirano M., Isaac N.D. 2005. Novel cell lines derived from adult human ventricular cardiomyocytes. J. Mol. Cell Cardiol. 39, 133–147. https://doi.org/10.1016/j.yjmcc.2005.03.003
  20. Kruger N.J. 1994. The Bradford method for protein quantitation. Methods Mol. Biol. 32, 9–15. https://doi.org/10.1385/0-89603-268-X:9
  21. Lavogina D., Lust H., Tahk M.J., Laasfeld T., Vellama H., Nasirova N., Vardja M., Eskla K.L., Salumets A., Rinken A., Jaal J. 2022. Revisiting the Resazurin-based sensing of cellular viability: Widening the application horizon. Biosensors (Basel). 12, 196. https://doi.org/10.3390/bios12040196
  22. Means R.E., Katz S.G. 2022. Balancing life and death: BCL-2 family members at diverse ER-mitochondrial contact sites. FEBS J. 289, 7075–7112. https://doi.org/10.1111/febs.16241

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).