On the Feasibility of Using an Acedane-Based Fluorescent Probe to Monitor Hydrogen Sulfide in Primary Neuronal Cultures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Hydrogen sulfide (H₂S), which, under physiological conditions, exists in cells mainly in the form of anion HS, is considered as a gaseous transmitter of inter- and intracellular signals along with nitrogen oxide and carbon monoxide. Analysis of the dynamics of H₂S content in living cells is impossible without creating sensitive and specific probes. Several acedan-based compounds have been synthesized in the group of K.H. Ahn (Singha et al., 2015. Anal. Chem. 87 (2), 1188–1195). In the presence of H₂S these probes attach to the sulfhydrilic group and form fluorescent carbocyclic compounds. The carbocyclic derivative of P3, compound csP3, was found to be optimal for fluorescence-microscopic studies in terms of spectral characteristics and response time to H₂S. In this work, we tested the suitability of csP3 to record H₂S changes in buffers mimicking the salt composition of the intracellular environment and in primary neuronal culture cells from rat cerebral cortex. It was found that reducing the polarity of the solution by adding dimethyl sulfoxide (30% by volume) caused a blue shift of the emission by ~10 nm and a twofold increase in fluorescence intensity. The csP3 fluorescence depends on the salt composition and increases in the presence of bicarbonate (NaHCO₃, 10 mM). Addition of P3 or csP3 to the neuronal culture caused a rapid increase in fluorescence, which was followed by a slow increase in fluorescence signal after 3–5 min. Glutamate (10 μM, in the presence of 10 μM glycine, 0 Mg2+) increased probe fluorescence, but only in those neurons in which delayed deregulation of calcium homeostasis did not occur. We conclude that the product of the reaction of P3 with H₂S is sensitive to a change in the salt composition of the intracellular medium and can be redistributed in cells between water and more hydrophobic environment. This means that an increase in P3 fluorescence in cells, especially after the addition of glutamate to neurons, does not necessarily indicate an increase in H₂S concentration. To confirm the feasibility of using P3 and structurally related probes as quantitative indicators of H₂S presence, additional studies of the properties of these compounds are needed.

Full Text

Restricted Access

About the authors

R. R. Sharipov

Institute of General Pathology and Pathophysiology

Email: surin_am@mail.ru
Russian Federation, Moscow,125315

I. A. Tarzhanov

National Medical Research Center of Children’s Health, Russian Ministry of Health; Institute of Pharmacy, The Sechenov First Moscow State Medical University, Russian Ministry of Health

Email: surin_am@mail.ru
Russian Federation, Moscow, 119296; Moscow, 119435

A. A. Zgodova

National Medical Research Center of Children’s Health, Russian Ministry of Health; Institute of Pharmacy, The Sechenov First Moscow State Medical University, Russian Ministry of Health

Email: surin_am@mail.ru
Russian Federation, Moscow, 119296; Moscow, 119435

Z. V. Bakaeva

National Medical Research Center of Children’s Health, Russian Ministry of Health; Gorodovikov Kalmyk State University

Email: surin_am@mail.ru
Russian Federation, Moscow, 119296; Elista, 358000

A. M. Surin

Institute of General Pathology and Pathophysiology

Author for correspondence.
Email: surin_am@mail.ru
Russian Federation, Moscow,125315

References

  1. Singha S., Kim D., Moon H., Wang T., Kim K.H., Shin Y.H., Jung J., Seo E., Lee S.J., Ahn K.H. 2015. Toward a selective, sensitive, fast-responsive, and biocompatible two-photon probe for hydrogen sulfide in live cells. Anal. Chem. 87 (2), 1188–1195.
  2. Wang R. 2002. Two’s company, three’s a crowd: Can H₂S be the third endogenous gaseous transmitter? FASEB J. 16 (13), 1792–1798.
  3. Li Q., Lancaster J.R. 2013. Chemical foundations of hydrogen sulfide biology. Nitric Oxide. 35, 21–34.
  4. Гусакова С.В., Ковалев И.В., Смаглий Л.В., Бирулина Ю.Г., Носарев А.В., Петрова И.В., Медведев М.А., Орлов С.Н., Реутов В.П. 2015. Газовая сигнализация в клетках млекопитающих. Успехи физиол. наук. 46 (4), 53–73.
  5. Сукманский О.И., Реутов В.П. 2016. Газотрансмиттеры: физиологическая роль и участие в патогенезе заболеваний. Успехи физиол. наук. 47 (3), 30–58.
  6. Reutov V.P., Sorokina E.G, Sukmansky O.I. 2020. Cycles of nitric oxide (NO), superoxide radical anion (•O2–) and hydrogen sulfur/sulfur dioxide (H₂S/SO2) in mammals. Current Res. Biopolymers, 3, 1.
  7. Wang R. 2010. Hydrogen sulfide: The third gasotransmitter in biology and medicine. Antioxid. Redox Signal, 12 (9), 1061–1064.
  8. Kimura H. 2010. Hydrogen sulfide: From brain to gut. Antioxid. Redox Signal. 12 (9), 1111–1123.
  9. Kimura H. 2020. Hydrogen sulfide signalling in the CNS – Comparison with NO. Br.J. Pharmacol. 177 (22), 5031–5045.
  10. Kumar M., Sandhir R. 2018. Hydrogen sulfide in physiological and pathological mechanisms in brain. CNS Neurol. Disord. Drug Targets. 17 (9), 654–670.
  11. Zhong H., Yu H., Chen J., Sun J., Guo L., Huang P., Zhong Y. 2020. Hydrogen sulfide and endoplasmic reticulum stress: A potential therapeutic target for central nervous system degeneration diseases. Front. Pharmacol. 11, 702. doi: 10.3389/fphar.2020.00702.
  12. Salehpour M., Ashabi G., Kashef M., Marashi E.S., Ghasemi T. 2023. Aerobic training with naringin supplementation improved spatial cognition via H₂S signaling pathway in Alzheimer’s disease model rats. Exp. Aging Res. 49 (4), 407–420.
  13. Sun P., Chen H.C., Lu S., Hai J., Guo W., Jing Y.H., Wang B. 2022. Simultaneous sensing of H₂S and ATP with a two-photon fluorescent probe in Alzheimer’s disease: Toward understanding why H₂S regulates glutamate-induced ATP dysregulation. Anal. Chem. 94 (33), 11573–11581.
  14. Wang S., Huang Y., Guan X. 2021. Fluorescent probes for live cell thiol detection. Molecules. 26 (12).
  15. Chen S., Hou P., Wang J., Fu S., Liu L. 2018. A rapid and selective fluorescent probe with a large Stokes shift for the detection of hydrogen sulfide. Spectrochim. Acta A Mol. Biomol. Spectrosc. 203, 258–262.
  16. Chen X., Huang Z., Huang L., Shen Q., Yang N. Di, Pu C., Shao J., Li L., Yu C., Huang W. 2022. Small-molecule fluorescent probes based on covalent assembly strategy for chemoselective bioimaging. RSC Adv. 12 (3), 1393–1415.
  17. Yan L., Gu Q.S., Jiang W.L., Tan M., Tan Z.K., Mao G.J., Xu F., Li C.Y. 2022. Near-infrared fluorescent probe with large stokes shift for imaging of hydrogen sulfide in tumor-bearing mice. Anal. Chem. 94 (14), 5514–5520.
  18. Singha S., Kim D., Roy B., Sambasivan S., Moon H., Rao A.S., Kim J.Y., Joo T., Park J.W., Rhee Y.M., Wang T., Kim K.H., Shin Y.H., Jung J., Ahn K.H. 2015. A structural remedy toward bright dipolar fluorophores in aqueous media. Chem. Sci. 6 (7), 4335–4342.
  19. Safiulina D., Kaasik A., Seppet E., Peet N., Zharkovsky A., Seppet E. 2004. Method for in situ detection of the mitochondrial function in neurons. J. Neurosci. Methods. 137 (1), 87–95.
  20. Kolikova J., Afzalov R., Surin A., Lehesjoki A.E., Khiroug L. 2011. Deficient mitochondrial Ca²⁺ buffering in the Cln8(mnd) mouse model of neuronal ceroid lipofuscinosis. Cell Calcium. 50 (6), 491–501.
  21. Бакаева З.В., Сурин А.М., Лизунова Н.В., Згодова А.Е., Красильникова И.А., Фисенко А.П., Фролов Д.А., Андреева Л.А., Мясоедов Н.Ф., Пинелис В.Г. 2020. Нейропротекторный потенциал пептидов HFRWPGP (ACTH 6–9 PGP), KKRRPGP, PyrRP в культивируемых корковых нейронах при глутаматной эксайтотоксичности. Докл. РАН. Науки о жизни. 491 (1), 117–121.
  22. Krasil’nikova I., Surin A., Sorokina E., Fisenko A., Boyarkin D., Balyasin M., Demchenko A., Pomytkin I., Pinelis V. 2019. Insulin protects cortical neurons against glutamate excitotoxicity. Front. Neurosci. 13, 1027. doi: 10.3389/fnins.2019.01027.
  23. Liang G.H., Adebiyi A., Leo M.D., McNally E.M., Leffler C.W., Jaggar J.H. 2011. Hydrogen sulfide dilates cerebral arterioles by activating smooth muscle cell plasma membrane KATP channels. Am.J. Physiol. Heart Circ. Physiol. 300 (6), H2088–H2095. doi: 10.1152/ajpheart.01290.2010.
  24. Yoo D., Jupiter R.C., Pankey E.A., Reddy V.G., Edward J.A., Swan K.W., Peak T.C., Mostany R., Kadowitz P.J. 2015. Analysis of cardiovascular responses to the H₂S donors Na₂S and NaHS in the rat. Am.J. Physiol. Heart Circ. Physiol. 309 (4), H605–H614.
  25. Лакович Дж. 1986. Основы флуоресцентной спектроскопии. М.: Мир, с. 194–221.
  26. Vaughan-Jones R.D., Spitzer K.W. 2002. Role of bicarbonate in the regulation of intracellular pH in the mammalian ventricular myocyte. Biochem. Cell Biol. 80 (5), 579–596.
  27. Khodorov B. 2004. Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones. Prog. Biophys. Mol. Biol. 86 (2), 279–351.
  28. Шарипов Р.Р., Красильникова И.А., Пинелис В.Г., Горбачева Л.Р., Сурин А.М. 2018. Исследование механизма сенситизации нейронов к повторному действию глутамата. Биол. мембраны. 35 (5), 384–397.
  29. Kiedrowski L. 1999. N-methyl-D-aspartate excitotoxicity: Relationships among plasma membrane potential, Na+/Ca²⁺ exchange, mitochondrial Ca²⁺ overload, and cytoplasmic concentrations of Ca²⁺, H+, and K⁺. Mol. Pharmacol. 56 (3), 619–632.
  30. Nicholls D.G., Budd S.L. 2000. Mitochondria and neuronal survival. Physiol. Rev. 80 (1), 315–360.
  31. Bolshakov A.P., Mikhailova M.M., Szabadkai G., Pinelis V.G., Brustovetsky N., Rizzuto R., Khodorov B.I. 2008. Measurements of mitochondrial pH in cultured cortical neurons clarify contribution of mitochondrial pore to the mechanism of glutamate-induced delayed Ca²⁺ deregulation. Cell Calcium. 43 (6), 602–614.
  32. Сурин А.М., Красильникова И.А., Пинелис В.Г., Ходоров Б.И. 2014. Исследование взаимосвязи между индуцированной глутаматом отсроченной Ca²⁺-диcрегуляцией, митохондриальной деполяризацией и последующей гибелью нейронов. Патогенез. 12 (4), 40–46.
  33. Сурин А.М., Горбачева Л.Р., Савинкова И.Г., Шарипов Р.Р., Пинелис В.Г. 2022. Изменения pH в матриксе митохондрий и цитозоле при индуцированной глутаматом диcрегуляции Cа2+-гомеостаза в культивируемых нейронах гиппокампа крысы. Биол. мембраны. 39 (4), 307–318.
  34. Efremov Y.M. Yu.M., Grebenik E.A., Sharipov R.R., Krasilnikova I.A., Kotova S.L., Akovantseva A.A., Bakaeva Z.V., Pinelis V.G., Surin A.M., Timashev P.S. 2020. Viscoelasticity and volume of cortical neurons under glutamate excitotoxicity and osmotic challenges. Biophys. J. 119 (9), 1712–1723.
  35. Yao L., Yin C., Huo F. 2022. Small-molecule fluorescent probes for detecting several abnormally expressed substances in tumors. Micromachines (Basel). 13, 1328. https://doi.org/10.3390/mi13081328
  36. Vitvitsky V., Kumar R., Libiad M., Maebius A., Landry A.P., Banerjee R. 2021. The mitochondrial NADH pool is involved in hydrogen sulfide signaling and stimulation of aerobic glycolysis. J. Biol. Chem., 296, 100736–100750.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1

Download (68KB)
3. Fig.2

Download (114KB)
4. Fig.3

Download (135KB)
5. Fig.4

Download (313KB)
6. Fig.5

Download (633KB)
7. Fig.6

Download (570KB)

Copyright (c) 2024 The Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies