Cell Volume Regulation of Endothelial Cells Is Impaired in Keratoconus Cornea

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work the permeability to water and urea of plasma membranes of endothelial cells of normal corneas and corneas with keratoconus was investigated. The endothelial cells were obtained from surgery material. Measurements of osmotic aqueous permeability (Pf) of endothelial cells in normal and in keratoconus did not reveal significant differences of this parameter in the two studied groups. The control cells and the cells from keratoconus cornea have similar osmotic water permeability (control cells, Pf = 0.53 ± 0.045 cm/s; keratoconus cells, Pf = 0.63 ± 0.041 cm/s; n = 25; p ≥ 0.05). Neither coefficient of urea permeability differed significantly in these groups (control, Pu = 0.049 ± 0.003 cm/s; keratoconus, Pu = 0.056 ± 0.003 cm/s; n = 25; p ≥ 0.05). Analysis of cell volume dynamics based on exponential approximation showed a more pronounced decrease of the cell volume of endothelial cells from keratoconus cornea in hypertonic medium in comparison with the cells from normal cornea. The increase of cell volume caused by isotonic entering of urea into the cells in hypertonic medium also was more pronounced in these cells in comparison with the normal ones. We conclude that there are significant changes in cell volume regulating mechanism in keratoconus cornea endothelial cells.

Full Text

Restricted Access

About the authors

I. M. Kuseina

Novosibirsk State University

Email: eugsol@bionet.nsc.ru
Russian Federation, Novosibirsk, 630090

L. E. Katkova

Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

Email: eugsol@bionet.nsc.ru
Russian Federation, Novosibirsk, 630090

G. S. Baturina

Novosibirsk State University; Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

Email: eugsol@bionet.nsc.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090

I. G. Palchikova

Novosibirsk State University; Tecnological Design Institute of Scientific Instrument Engineering of the Siberian Branch of the Russian Academy of Sciences

Email: eugsol@bionet.nsc.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630058

I. A. Iskakov

Fedorov Eye Microsurgery Clinic (Novosibirk Department)

Email: eugsol@bionet.nsc.ru
Russian Federation, Novosibirsk, 630096

E. I. Solenov

Novosibirsk State University; Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Technical University

Author for correspondence.
Email: eugsol@bionet.nsc.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090; Novosibirsk, 630087

References

  1. Santodomingo-Rubido J., Carracedo G., Suzaki A., Villa-Collar C., Vincen S.J., Wolffsohn J.S. 2022. Keratoconus: An updated review. Cont. Lens Anterior Eye. 45.(3), 101559.
  2. Scroggs M.W., Proia A.D. 1992. Histopathological variation in keratoconus. Cornea 11 (6), 553–559.
  3. Bitirgen G., Ozkagnici A., Bozkurt B., Malik R.A. 2015. In vivo corneal confocal microscopic analysis in patients with keratoconus. Int. J. Ophthalmol. 8, 534–539.
  4. Khaled M.L., Helwa I., Drewry M., Seremwe M., Estes A., Liu Y. 2017. Molecular and histopathological changes associated with keratoconus. Biomed. Res. Int. 2017, 7803029.
  5. Rabinowitz Y.S. 1998. Keratoconus. Surv. Ophthalmol. 42, 297–319.
  6. Ghosh S., Mutalib H.A., Kaur S., Ghoshal R., Retnasabapathy S. 2017. Corneal cell morphology in keratoconus: A confocal microscopic observation. Malays J. Med. Sci. 24 (2), 44–54.
  7. Weed K.H., MacEwen C.J., Cox A., McGhee C.N.J. 2007. Quantitative analysis of corneal microstructure in keratoconus utilising in vivo confocal microscopy. Eye. 21 (5), 614–623.
  8. Efron N., Hollingsworth J.G. 2008. New perspectives on keratoconus as revealed by corneal confocal microscopy. Clin. Exp. Optom. 91 (1), 34–55.
  9. El-Agha M.S.H., Sayed Y.M.E., Harhara R.M., Essam H.M. 2014. Correlation of corneal endothelial changes with different stages of keratoconus. Cornea. 33 (7), 707–711.
  10. Marianne O.P., Jodhbir S.M., Ula V.J., Francis W.P. 2021. Corneal endothelial dysfunction: Evolving understanding and treatment options. Progr. Retinal Eye Res. 82, 100904.
  11. Fernandes B.F., Logan P., Zajdenweber M.E., Santos L.N., Cheema D.P., Burnier M.N. 2008. Histopathological study of 49 cases of keratoconus. Pathology. 40 (6), 623–626.
  12. Mocan M.C., Yilmaz P.T., Irkec M., Orhan M. 2008. In vivo confocal microscopy for the evaluation of corneal microstructure in keratoconus. Curr. Eye Res. 33 (11), 933–939.
  13. Loukovitis E., Kozeis N., Gatzioufas Z., Kozei A., Tsotridou E., Stoila M., Koronis S., Sfakianakis K., Tranos P., Balidis M., Zachariadis Z., Mikropoulos D.G., Anogeianakis G., Katsanos A., Konstas A.G. 2019. The proteins of keratoconus: A literature review exploring their contribution to the pathophysiology of the disease. Adv. Ther. 36 (9), 2205–2222.
  14. Yam G.H.F., Fuest M., Zhou L., Liu Y.C., Deng L., Chan A.S. Ong H.S., Khor W.B., Ang M., Mehta J.S. 2019. Differential epithelial and stromal protein profiles in cone and non-cone regions of keratoconus corneas. Sci. Rep. 9 (1), 2965
  15. Srivastava O.P. Chandrasekaran D., Pfister R.R. 2006. Molecular changes in selected epithelial proteins in human keratoconus corneas compared to normal corneas. Mol. Vis. 12, 1615–1625.
  16. Fan Gaskin J.C., Patel D.V., McGhee C.N.J. 2014. Acute corneal hydrops in keratoconus – new perspectives. Am.J. Ophthalmol. 157 (5), 921–928.
  17. Yahia Chérif H., Gueudry J., Afriat M., Delcampe A., Attal P., Gross H., Muraine M. 2015. Efficacy and safety of pre-Descemet’s membrane sutures for the management of acute corneal hydrops in keratoconus. Br.J. Ophthalmol. 99 (6), 773–777.
  18. Mathew J.H., Goosey J.D., Söderberg P.G., Bergmanson J.P.G. 2015. Lamellar changes in the keratoconic cornea. Acta Ophthalmol. 93 (8), 767–773.
  19. Bonanno J.A. 2012. Molecular mechanisms underlying the corneal endothelial pump. Exp. Eye Res. 95 (1), 2–7.
  20. Lang F., Busch G.L., Ritter M., Volkl H., Waldegger S., Gulbins E., Haussinger D. 1998. Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78, 247–306.
  21. O’Neill W.C. 1999. Physiological significance of volume-regulatory transporters. Am.J. Physiol. Cell Physiol. 276, C995–C1011.
  22. Strange K. 2004. Cellular volume homeostasis. Adv. Physiol. Educ. 28 (1–4), 155–159.
  23. Gulotta M., Qiu L., Desamero R., Rösgen J., Bolen D.W., Callender R. 2007. Effects of cell volume regulating osmolytes on glycerol 3-phosphate binding to triosephosphate isomerase. Biochemistry. 46 (35), 10055–10062.
  24. Alvarez B.V., Piché M., Aizouki C., Rahman F., Derry J.M.J., Brunette I., Casey J.R. 2021. Altered gene expression in slc4a11-/- mouse cornea highlights SLC4A11 roles. Sci. Rep. 11 (1), 20885. doi: 10.1038/s41598–021–98921-w.
  25. Nakayama Y., Naruse M., Karakashian A., Peng T., Sands J.M., Bagnasco S.M. 2001. Cloning of the rat Slc14a2 gene and genomic organization of the UT-A urea transporter. Biochim. Biophys. Acta. 1518 (1–2),19–26
  26. Bagnasco S.M., Peng T., Janech M.G., Karakashian A., Sands J.M. 2001. Cloning and characterization of the human urea transporter UT-A1 and mapping of the human Slc14a2 gene. Am.J. Physiol. Renal Physiol. 281 (3), F400–6.
  27. Solenov E., Watanabe H., Manley G.T., Verkman A.S. 2004. Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am.J. Physiol. Cell Physiol. 286 (2), 426–432.
  28. Батурина Г.С., Каткова Л.Е., Колосова Н.Г., Соленов Е.И. 2017. Изменение транспорта воды клетками эндотелия роговицы у крыс при старении. Успехи геронтол. 30 (5), 659–664.
  29. Zarogiannis S.G., Ilyaskin A.V., Baturina G.S., Katkova L.E., Medvedev D.A., Karpov D.I., Ershov A.P., Solenov E.I. 2013. Regulatory volume decrease of rat kidney principal cells after successive hypo-osmotic shocks. Math. Biosci. 244 (2), 176–187.
  30. Solenov E.I., Baturina G.S., Ilyaskin A.V., Katkova L.Y., Ivanova L.N. 2011. Cell volume regulation of rat kidney collecting duct epithelial cells in hypotonic medium. Dokl. Biol. Sci. 436, 13–55.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1

Download (73KB)
3. Fig.2

Download (61KB)
4. Fig.3

Download (64KB)
5. Fig.4

Download (60KB)
6. Fig.5

Download (59KB)

Copyright (c) 2024 The Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies