Effect of Nicotinic Acetylcholine Receptor Ligands on Adhesive Properties of Murine Bone Marrow Granulocytes During Inflammation
- Authors: Jirova E.A.1, Serov D.A.1,2, Fedorova E.V.3, Safronova V.G.1
-
Affiliations:
- Institute of Cell Biophysics of the Russian Academy of Sciences
- Prokhorov General Physics Institute of the Russian Academy of Sciences
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
- Issue: Vol 41, No 2 (2024)
- Pages: 99-114
- Section: Articles
- URL: https://journals.rcsi.science/0233-4755/article/view/257067
- DOI: https://doi.org/10.31857/S0233475524020017
- EDN: https://elibrary.ru/xxhoiw
- ID: 257067
Cite item
Abstract
The first stage of mature neutrophil granulocytes leaving the bone marrow into the blood and migration to inflammatory center is attachment to vascular endothelium. Disturbance of neutrophil adhesiveness is critical for many diseases with inflammatory components. Endo- and exogenous factors modify the cell ability to adhere via different receptors, including nicotinic acetylcholine receptors (nAChRs). However, the involvement of nAChRs in the regulation of bone marrow (BM) granulocyte adhesion and the role of signaling components in the action of nicotine are poorly understood. In this work the role of different types of nAChRs in the regulation of murine BM granulocyte adhesion during acute inflammation was studied. The study was performed on BM granulocytes of the BALB/c mouse strain using static adhesion assay, confocal microscopy, inhibitor assay, and reverse transcription PCR (RT-PCR). The role of nAChR types was assessed using selective antagonists: 10 nM α-CTX (α7), 10 nM GIC and 5 nM MII (α3β2), 200 nM MII (α3β2 and α7), RgIA and Vc1.1 (α9α10). The number of attached BM granulocytes did not differ between animals with and without inflammation. Nicotine (0.01–100 µM, 30 min) significantly increased cell adhesion in both groups. Toxins (α-CTX, RgIA, Vc1.1) enhanced cell adhesion in both groups, as 200 nM MII did in controls. Fluorescence labelling assays showed expression of α7 and α10 nAChR subunits on cytoplasmic membrane of native BM granulocytes. Using inhibitors, we showed that the effect of nicotine on BM granulocyte adhesion was mediated by heterotrimeric G-proteins, PKC, PI3K, and ROCK both normally and in the presence of inflammation. α7 and α9α10 nAChRs were predominantly involved in regulation of BM granulocyte adhesion, and participation of α3β2 was negligible, possibly due to low expression of α3 subunits. In the regulation of cell adhesion by nicotine, the development of inflammation in the body enhanced the role of α7 nAChRs, which are conventionally expressed on the membrane of BM granulocytes.
Full Text

About the authors
E. A. Jirova
Institute of Cell Biophysics of the Russian Academy of Sciences
Email: safronova@icb.psn.ru
Russian Federation, Pushchino, Moscow oblast, 142290
D. A. Serov
Institute of Cell Biophysics of the Russian Academy of Sciences; Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: safronova@icb.psn.ru
Russian Federation, Pushchino, Moscow oblast, 142290; Moscow, 119991
E. V. Fedorova
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: safronova@icb.psn.ru
Russian Federation, Pushchino, Moscow oblast, 142290
V. G. Safronova
Institute of Cell Biophysics of the Russian Academy of Sciences
Author for correspondence.
Email: safronova@icb.psn.ru
Russian Federation, Pushchino, Moscow oblast, 142290
References
- Itou T., Collins L.V., Thoren F.B., Dahlgren C., Karlsson A. 2006. Changes in activation states of murine polymorphonuclear leukocytes (PMN) during inflammation: A comparison of bone marrow and peritoneal exudate PMN. Clin. Vaccine Immunol. 13, 575–583. doi: 10.1128/CVI.13.5.575–583.2006
- Liew P.X., Kubes P. 2019. The neutrophil’s role during health and disease. Physiol. Rev. 99, 1223–1248. doi: 10.1152/physrev.00012.2018
- Rosales C. 2020. Neutrophils at the crossroads of innate and adaptive immunity. J. Leukoc. Biol. 108, 377–396. doi: 10.1002/JLB.4MIR0220–574RR
- Nauseef W.M., Borregaard N. 2014. Neutrophils at work. Nat. Immunol. 15, 602–611. doi: 10.1038/ni.2921
- Hajishengallis G., Moutsopoulos N.M., Hajishengallis E., Chavakis T. 2016. Immune and regulatory functions of neutrophils in inflammatory bone loss. Semin. Immunol. 28, 146–158. doi: 10.1016/j.smim.2016.02.002
- Tan S.-Y., Weninger W. 2017. Neutrophil migration in inflammation: intercellular signal relay and crosstalk. Current Opinion Immunol. 44, 34–42. doi: 10.1016/j.coi.2016.11.002
- Richardson I.M., Calo C.J., Hind L.E. 2021. Microphysiological systems for studying cellular crosstalk during the neutrophil response to infection. Front. Immunol. 27, 12:661537. doi: 10.3389/fimmu.2021.661537
- Root R.K. 1990. Leukocyte adhesion proteins: Their role in neutrophil function. Trans Am. Clin. Climatol. Assoc. 101, 207–224.
- Kolaczkowska E., Kubes P. 2013. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175. doi: 10.1038/nri3399
- Nourshargh S., Alon R. 2014. Leukocyte migration into inflamed tissues. Immunity. 41, 694–707. doi.org/10.1016/j.immuni.2014.10.008
- Filippi M.-D. 2019. Neutrophil transendothelial migration: Updates and new perspectives. Blood. 133, 2149–2158. doi: 10.1182/blood-2018–12–844605
- Bouti P., Webbers S.D.S., Fagerholm S.C., Alon R., Moser M., Matlung H.L., Kuijpers T.W. 2021. b2 Integrin signaling cascade in neutrophils: More than a single function. Front. Immunol. 11, 619925. doi: 10.3389/fimmu.2020.619925
- Margraf A., Lowell C.A., Zarbock A. 2022. Neutrophils in acute inflammation: Current concepts and translational implications. Blood. 139, 2130–2144. doi: 10.1182/blood.2021012295
- Ley K., Laudanna C., Cybulsky M.I., Nourshargh S. 2007. Getting to the site of inflammation: The leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689. doi: 10.1038/nri2156
- Futosi K., Fodor S., Mócsai A. 2013. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int. Immunopharmacol. 17, 638–650. doi: 10.1016/j.intimp.2013.06.034
- Qiu D., Zhang L., Zhan J., Yang Q., Xiong H., Hu W., Ji Q., Huang J. 2020. Hyperglycemia decreases epithelial cell proliferation and attenuates neutrophil activi-ty by reducing ICAM-1 and LFA-1 expression levels. Front. Genet. 11, 616988. doi: 10.3389/fgene.2020.616988
- Conley H.E., Sheats M.K. 2023. Targeting neutrophil β2-integrins: A review of relevant resources, tools, and methods. Biomolecules. 13, 892.
- González-Amaro R. 2011. Cell adhesion, inflammation and therapy: Old ideas and a significant step forward. Acta Pharmacol. Sinica. 32, 1431–1432. doi: 10.1038/aps.2011.154
- Ren C., Tong Y.L., Li J.C., Lu Z.Q., Yao Y.M. 2017. The protective effect of alpha 7 nicotinic acetylcholine receptor activation on critical illness and its mechanism. Int. J. Biol. Sci. 13, 46–56. doi: 10.7150/ijbs.16404
- Belchamber K.B.R., Hughes M.J., Spittle D.A., Walker E.M., Sapey E. 2021. New pharmacological tools to target leukocyte trafficking in lung disease. Front. Immunol. 12, 704173. doi: 10.3389/fimmu.2021.704173
- Safronova V.G., Vulfius K.A., Astashev M.E., Tikho-nova I.V., Serov D.A., Jirova E.A., Pershina E.V., Senko D.A., Zhmak M.N., Kasheverov I.E., Tsetlin V.I. 2021. α9α10 nicotinic acetylcholine receptors regulate murine bone marrow granulocyte functions. Immunobiology. 226, 152047. doi: 10.1016/j.imbio.2020.152047
- Fujii T., Mashimo M., Moriwaki Y., Misawa H., Ono S., Horiguchi K., Kawashima K. 2017. Expression and function of the cholinergic system in immune cells. Front. Immunol. 8, 1085. doi: 10.3389/fimmu.2017.01085
- Herman M., Robert Tarran R. 2020. E-cigarettes, ni-cotine, the lung and the brain: Multi-level cascading pathophysiology. J. Physiol. 598, 5063–5071. doi: 10.1113/JP278388
- Shelukhina I., Siniavin A., Kasheverov I., Ojomoko L., Tsetlin V., Utkin Y. 2023. α7- and α9-containing nicotinic acetylcholine receptors in the functioning of immune system and in pain. Int. J. Mol. Sci. 24, 6524. doi: 10.3390/ijms24076524
- Slevin M., Iemma R.S., Zeinolabediny Y., Liu D., Ferris G.R., Caprio V., Phillips N., Di Napoli M., Guo B., Zeng X., Al Baradie R., Binsaleh N.K., McDowell G., Fang W.H. 2018. Acetylcholine inhibits monomeric С-reactive protein induced inflammation, endothelial cell adhesion, and platelet aggregation; A potential therapeutic? Front. Immunol. 9, 2124. doi: 10.3389/fimmu.2018.02124
- Hamano R., Takahashi H.K., Iwagaki H., Yoshino T., Nishibori M., Tanaka N. 2006. Stimulation of alpha7 nicotinic acetylcholine receptor inhibits CD14 and the toll-like receptor 4 expression in human monocytes. Shock. 26, 358–364. doi: 10.1097/01.shk.0000228168.86845.60
- Sato Y., Kosuke Maruyama K., Mikami M., Sato S. 2023. Effects of nicotine and lipopolysaccharide stimulation on adhesion molecules in human gingival endothelial cells. Odontology. 111, 428–438. doi: 10.1007/s10266–022–00753–1
- Scott D.A., Palmer R.M. 2002. The influence of tobacco smoking on adhesion molecule profiles. Tob. Induc. Dis. 1, 7–25. doi: 10.1186/1617–9625–1–1–7
- Li Z.-Z., Guo Z.-Z., Zhang Z., Cao Q.-A., Zhu Y.-J., Yao H.-L., Wu L.-L., Dai Q.-Y. 2015. Nicotine-induced upregulation of VCAM-1, MMP-2, and MMP-9 through the α7-nAChR-JNK pathway in RAW264.7 and MOVAS cells. Mol. Cell. Biochem. 399, 49–58. doi: 10.1007/s11010–014–2231-z
- Yong T., Zheng M.Q., Linthicum D.S. 1997. Nicotine induces leukocyte rolling and adhesion in the cerebral microcirculation of the mouse. J. Neuroimmunol. 80, 158–164. doi: 10.1016/s0165–5728(97)00151–3
- Grando S.A. 2006. Cholinergic control of epidermal cohesion. Exp. Dermatol. 15, 265–282. doi: 10.1111/j.0906–6705.2006.00410.x
- Chernyavsky A.I., Arredondo J., Vetter D.E., Grando S.A. 2007. Central role of alpha9 acetylcholine receptor in coordinating keratinocyte adhesion and motility at the initiation of epithelialization. Exp. Cell. Res. 313, 3542–3555. doi: 10.1016/j.yexcr.2007.07.011
- Chernyavsky A.I., Galitovskiy V., Grando S.A. 2015. Molecular mechanisms of synergy of corneal muscarinic and nicotinic acetylcholine receptors in upregulation of E-cadherin expression. Int. Immunopharmacol. 29, 15–20. doi: 10.1016/j.intimp.2015.04.036
- Mashimo M., Moriwaki Y., Misawa H., Kawashima K., Fujii T. 2021. Regulation of Immune functions by non-neuronal acetylcholine (ACh) via muscarinic and nicotinic ACh receptors. Int. J. Mol. Sci. 22, 6818. doi: 10.3390/ijms22136818
- Safronova V.G., Vulfius C.A., Shelukhina I.V, Mal’tseva V.N., Berezhnov A.V, Fedotova E.I., Miftahova R.G., Kryukova E.V., Grinevich A.A., Tsetlin V.I. 2016. Nicotinic receptor involvement in regulation of functions of mouse neutrophils from inflammatory site. Immunobiology. 221, 761–772. doi: 10.1016/j.imbio.2016.01.016
- Boxio R., Bossenmeyer-Pourie C., Steinckwich N., Dournon C., Nusse O. 2004. Mouse bone marrow contains large numbers of functionally competent neutrophils. J. Leukoc. Biol. 75, 604–611. doi: 10.1189/jlb.0703340
- Filina J.V., Gabdoulkhakova A.G., Safronova V.G. 2014. RhoA/ROCK downregulates FPR2-mediated NADPH oxidase activation in mouse bone marrow granulocytes. Cell. Signal. 26, 2138–2146. doi: 10.1016/j.cellsig.2014.05.017
- Shelukhina I.V., Kryukova E.V., Lips K.S., Tsetlin V.I., Kummer W. 2009. Presence of alpha7 nicotinic acetylcholine receptors on dorsal root ganglion neurons proved using knockout mice and selective alpha-neurotoxins in histochemistry. J. Neurochem. 109, 1087–1095. doi: 10.1111/j.1471–4159.2009.06033.x
- Lykhmus O., Voytenko L.P., Lips K.S., Bergen I., Krasteva-Christ G., Vetter D.E., Kummer W., Skok M. 2017. Nicotinic acetylcholine receptor α9 and α10 subunits are expressed in the brain of mice. Front. Cell. Neurosci. 11, 282. doi: 10.3389/fncel.2017.00282
- Russell M.A., Jarvis M., Iyer R., Feyerabend C. 1980. Relation of nicotine yield of cigarettes to blood nicotine concentrations in smokers. Br. Med. J. 280, 972–976. doi: 10.1136/bmj.280.6219.972
- Benowitz N.L., Hukkanen J., Jacob P. 3rd. 2009. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb. Exp. Pharmacol. 192, 29–60. doi: 10.1007/978–3–540–69248–5_2
- Alama A., Bruzzo C., Cavalieri Z., Forlani A., Utkin Y., Casciano I., Romani M. 2011. Inhibition of the nicotinic acetylcholine receptors by cobra venom α-neurotoxins: Is there a perspective in lung cancer treatment? PLoS One. 6, e20695. doi: 10.1371/journal.pone.0020695
- McIntosh J.M., Dowell C., Watkins M., Garrett J.E., Yoshikami D., Olivera B.M. 2002. Alpha-conotoxin GIC from Conus geographus, a novel peptide antagonist of nicotinic acetylcholine receptors. J. Biol. Chem. 277, 33610–33615. doi: 10.1074/jbc.M205102200
- Chi S.W., Kim D.H., Olivera B.M., McIntosh J.M., Han K.H. 2004. Solution conformation of alpha-conotoxin GIC, a novel potent antagonist of alpha3beta2 nicotinic acetylcholine receptors. Biochem. J. 1, 347–352. doi: 10.1042/BJ20031792
- Sambasivarao S.V., Roberts J., Bharadwaj V.S., Slingsby J.G., Rohleder C., Mallory C., Groome J.R., McDougal O.M., Maupin M.C. 2014. Acetylcholine promotes binding of α-conotoxin MII for α3β2 nicotinic acetylcholine. Chembiochem. 15, 413–424. doi: 10.1002/cbic.201300577
- Kasheverov I., Kudryavtsev D., Shelukhina I., Nikolaev G., Utkin Y., Tsetlin V. 2022. Marine origin ligands of nicotinic receptors: Low molecular compounds, peptides and proteins for fundamental research and practical applications. Biomolecules. 12, 189. doi: 10.3390/biom12020189
- Bouzat C., Sine S.M. 2018. Nicotinic acetylcholine receptors at the single-channel level. Br. J. Pharmacol. 175, 1789–1804. doi: 10.1111/bph.13770
- Corringer P.J., Poitevin F., Prevost M.S., Sauguet L., Delarue M., Changeux J.P. 2012. Structure and pharmacology of pentameric receptor channels: From bacteria to brain. Structure. 20, 941–956. doi: 10.1016/j.str.2012.05.003
- Papke R.L., Lindstrom J.M. 2020. Nicotinic acetylcholine receptors: Conventional and unconventional ligands and signaling. Neuropharmacology. 168, 108021. doi: 10.1016/j.neuropharm.2020.108021
- Stokes C., Treinin M., Papke R.L. 2015. Looking below the surface of nicotinic acetylcholine receptors. Trends Pharmacol. Sci. 36, 514–523. doi: 10.1016/j.tips.2015.05.002
- King J.R., Kabbani N. 2016. Alpha 7 nicotinic receptor coupling to heterotrimeric G proteins modulates RhoA activation, cytoskeletal motility, and structural growth. J. Neurochem. 138, 532–545. doi: 10.1111/jnc.13660
- Oz M., King J.R., Yang K.-H.S., Khushaish S., Tchugunova Y., Khajah M.A., Luqmani Y.A., Kabbani N. 2023. α7 nicotinic acetylcholine receptor interaction with G proteins in breast cancer cell proliferation, motility, and calcium signaling. PLoS One. 18, e0289098. doi: 10.1371/journal.pone.0289098
- Brown E.J., Frazier W.A. 2001. Integrin-associated protein (CD47) and its ligands. Trends Cell. Biol. 11, 130–135. doi: 10.1016/s0962–8924(00)01906–1
- Locht C., Antoine R. 2021. The history of pertussis toxin. Toxins (Basel). 13, 623. doi: 10.3390/toxins13090623
- St-Pierre S., Jiang W., Roy P., Champigny C., Le-Blanc E., Morley B.J., Hao J., Simard A.R. 2016. Nicotinic acetylcholine receptors modulate bone marrow-derived pro-inflammatory monocyte production and survival. PLoS One. 11, e0150230. doi: 10.1371/journal.pone.0150230
- Tracey K.J. 2002. The inflammatory reflex. Nature. 420, 853–859. doi: 10.1038/nature01321
- Pavlov V.A., Chavan S.S., Tracey K.J. 2018.Molecular and functional neuroscience in immunity. Ann. Rev. Immunol. 36, 783–812. doi: 10.1146/annurev-immunol-042617–053158
- Caravaca A.S., Gallina A.L., Tarnawski L., Shavva V.S., Colas R.A., Dalli J., Malin S.G., Hult H., Arnardottir H., Olofsson P.S. 2022. Vagus nerve stimulation promotes resolution of inflammation by a mechanism that involves Alox15 and requires the α7nAChR subunit. Proc. Natl. Acad. Sci. USA. 119, e2023285119. doi: 10.1073/pnas.2023285119
- Grassi L., Pourfarzad F., Ullrich S., Merkel A., Were F., Carrillo-de-Santa-Pau E., Yi G., Hiemstra I.H., Tool A.T.J., Mul E., Perner J., Janssen-Megens E., Berentsen K., Kerstens H., Habibi E., Gut M., Yaspo M.L., Linser M., Lowy E., Datta A., Clarke L., Flicek P., Vingron M., Roos D., van den Berg T.K., Heath S., Rico D., Frontini M., Kostadima M., Gut I., Valencia A., Ouwehand W.H., Stunnenberg H.G., Martens J.H.A., Kuijpers T.W. 2018. Dynamics of transcription regulation in human bone marrow myeloid differentiation to mature blood neutrophils. Cell Reports. 24, 2784–2794. doi: 10.1016/j.celrep.2018.08.018
- Khoyratty T.E., Ai Z., Ballesteros I., Eames H.L., Mathie S., Martín-Salamanca S., Wang L., Hemmings A., Willemsen N., von Werz V., Zehrer A., Walzog B., van Grinsven E., Hidalgo A., Udalova I.A. 2021. Distinct transcription factor networks control neutrophil-driven inflammation. Nat. Immunol. 22, 1093–1106. doi: 10.1038/s41590–021–00968–4
- Evrard M., Kwok I.W.H., Chong S.Z., Teng K.W.W., Becht E., Chen J., Sieow J.L., Penny H.L., Ching G.C., Devi S., Adrover J.M., Li J.L.Y., Liong K.H., Tan L., Poon Z., Foo S., Chua J.W., Su I.-H., Balabanian K., Bachelerie F., Biswas S.K., Larbi A., Hwang W.Y.K., Madan V., Koeffler H.P., Wong S.C., Newell E.W., Hidalgo A., Ginhoux F., Ng L.G. 2019. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Blood. 133, 2149–2158. doi: 10.1182/blood-2018–12–844605
- Serov D.A., Tikhonova I.V., Safronova V.G., Astashev M.E. 2021. Calcium activity in response to nAChR ligands in murine bone marrow granulocytes with different Gr-1 expression. Cell Biol. International. 45, 1533–1545. doi: 10.1002/cbin.11593
- Yvan-Charvet L., Ng L.G. 2019. Granulopoiesis and neutrophil homeostasis: A metabolic, daily balancing act. Trends Immunol. 40, 598–612. doi: 10.1016/j.it.2019.05.004
- Cormier A., Paas Y., Zini R., Tillement J.-P., Lagrue G., Changeux J.-P., Grailhe R. 2004. Long-term exposure to nicotine modulates the level and activity of acetylcholine receptors in white blood cells of smokers and model mice. Mol. Pharmacol. 66, 1712–1718. doi: 10.1124/mol.104.000463
- Cesaro L., Pinna L.A., Salvi M. 2015. A comparative analysis and review of lysyl residues affected by posttranslational modifications. Curr. Genomics. 16, 128–138. doi: 10.2174/1389202916666150216221038
- Buccitelli C., Selbach M. 2020. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644. doi: 10.1038/s41576–020–0258–4
Supplementary files
