Molecular Model of Norfloxacin Translocation Through the Yersinia pseudotuberculosis OmpF Porin Channel

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The interaction of Yersinia pseudotuberculosis OmpF (YpOmpF) porin with the fluoroquinolone antibiotic norfloxacin (Nf) and its derivatives (mono- and dihydrochloride) was studied using methods based on the use of bilayer lipid membranes (BLM), molecular modeling, and antibacterial activity testing. Asymmetric behavior of charged Nf (NfH+1) and (Nf2H+2) molecules was found to move through the YpOmpF channel depending on the membrane voltage and the side of antibiotic addition. Electrophysiological data were confirmed by computer modeling. For charged forms of the antibiotic, the presence of two peripheral high-affinity binding sites (NBS1 and NBS2), as well as an asymmetric current blocking site near the channel constriction zone (NBS3), was detected. The NBS1 site located near the channel mouth has almost the same affinity for both charged forms of Nf, while the localization of the more energetically favorable NBS2 site for the two salt forms of the antibiotic differs significantly. Nf has only one binding site near the channel constriction zone, which is a cluster of sites with lower overall affinity compared to the peripheral binding sites mentioned above. Slight differences were found in the antibacterial activity of the three forms of Nf, which is likely due to their different charge states and, accordingly, different permeability and/or ability to bind within the YpOmpF channel.

Full Text

Restricted Access

About the authors

D. K. Chistyulin

Еlyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: zel01@mail.ru
Russian Federation, Vladivostok, 690022

E. A. Zelepuga

Еlyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Author for correspondence.
Email: zel01@mail.ru
Russian Federation, Vladivostok, 690022

V. L. Novikov

Еlyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: zel01@mail.ru
Russian Federation, Vladivostok, 690022

N. N. Balaneva

Еlyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: zel01@mail.ru
Russian Federation, Vladivostok, 690022

V. P. Glazunov

Еlyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: zel01@mail.ru
Russian Federation, Vladivostok, 690022

E. A. Chingizova

Еlyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: zel01@mail.ru
Russian Federation, Vladivostok, 690022

V. A. Khomenko

Еlyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: zel01@mail.ru
Russian Federation, Vladivostok, 690022

O. D. Novikova

Еlyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: novolga_05@mail.ru
Russian Federation, Vladivostok, 690022

References

  1. Ghai I., Ghai S. 2017. Infection and drug resistance exploring bacterial outer membrane barrier to combat bad bugs. Infection and Drug Resistance. 10, 261–273. https://doi.org/10.2147/IDR.S144299
  2. Scorciapino M.A., Acosta-Gutierrez S., Benkerrou D., D’Agostino T., Malloci G., Samanta S., Bodrenko I., Ceccarelli M. 2017. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria. J. Phys. Condens. Matter. 29 (11), 113001. https://doi.org/10.1088/1361–648X/aa543b
  3. Cowan S.W., Garavito R.M., Jansonius J.N., Jenkins J.A., Karlsson R., König N., Pai E.F., Pauptit R.A., Rizkallah P.J., Rosenbusch J.P., Rummel G., Schirmer T.1995. The structure of OmpF porin in a tetragonal crystal form. Structure. 3 (10), 1041–1050. https://doi.org/10.1016/S0969–2126(01)00240–4
  4. Baslé A., Rummel G., Storici P., Rosenbusch J.P., Schirmer T. 2006. Crystal structure of osmoporin OmpC from E. coli at 2.0 Å.J. Mol. Biol. 362 (5), 933–942. https://doi.org/10.1016/j.jmb.2006.08.002
  5. Acosta-Gutiérrez S., Bodrenko I., Scorciapino M.A., Ceccarelli M. 2016. Macroscopic electric field inside water-filled biological nanopores. Phys. Chem. Chem. Phys. 18 (13), 8855–8864. https://doi.org/10.1039/c5cp07902k
  6. Im W., Roux B. 2002. Ion permeation and selectivity of OmpF porin: A theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J. Mol. Biol. 322 (4), 851–869. https://doi.org/10.1016/S0022–2836(02)00778–7
  7. Bredin J., Saint N., Malléa M., Dé E., Molle G., Pagès J.M., Simonet V. 2002. Alteration of pore properties of Escherichia coli OmpF induced by mutation of key residues in anti-loop 3 region. Biochem. J. 363 (3), 521–528. https://doi.org/10.1042/0264–6021:3630521
  8. Yoshimura F., Nikaido H. 1985. Diffusion of beta-lactam antibiotics through the porin channels of Escherichia coli K-12. Antimicrob. Agents Chemother. 27 (1), 84–92. https://doi.org/10.1128/AAC.27.1.84
  9. Pagès J.M., James C.E., Winterhalter M. 2008. The porin and the permeating antibiotic: A selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol. 6 (12), 893–903. https://doi.org/10.1038/nrmicro1994
  10. Choi U., Lee C.R. 2019. Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coli. Front. Microbiol. 10, 953. https://doi.org/10.3389/fmicb.2019.00953
  11. James C.E., Mahendran K.R., Molitor A., Bolla J.M., Bessonov A.N., Winterhalter M., Pagès J.M. 2009. How β-lactam antibiotics enter bacteria: A dialogue with the porins. PLoS One.4 (5), e5453. https://doi.org/10.1371/journal.pone.0005453
  12. Acosta-Gutiérrez S., Ferrara L., Pathania M., Masi M., Wang J., Bodrenko I., Zahn M., Winterhalter M., Stavenger R.A., Pagès J.M., Naismith J.H., van den Berg B., Page M., Ceccarelli M. 2018. Getting drugs into gram-negative bacteria: rational rules for permeation through general porins. ACS Infect. Dis. 4 (10), 1487–1498. https://doi.org/10.1021/acsinfecdis.8b00108
  13. Lou H., Chen M., Black S.S., Bushell S.R., Ceccarelli M., Mach T., Beis K., Low A.S., Bamford V.A., Booth I.R., Bayley H., Naismith J.H. 2011. Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multi-drug resistant E. coli. PLoS One. 6 (10), e25825. doi: 10.1371/journal.pone.0025825
  14. Ziervogel B.K., Roux B. 2013. The binding of antibiotics in OmpF porin. Structure. 21 (1), 76–87. https://doi.org/10.1016/j.str.2012.10.014
  15. Sugawara E., Kojima S., Nikaido H. 2016. Klebsiella pneumoniae major porins OmpK35 and OmpK36 allow more efficient diffusion of β-lactams than their Escherichia coli homologs OmpF and Omp C.J. Bacteriol. 198 (23), 3200–3208. https://doi.org/10.1128/JB.00590–16
  16. Moya-Torres A., Mulvey M.R., Kumar A., Oresnik I.J., Brassinga A.K.C. 2014. The lack of OmpF, but not OmpC, contributes to increased antibiotic resistance in Serratia marcescens. Microbiol. 160 (9), 1882–1892. https://doi.org/10.1099/mic.0.081166–0
  17. Okamoto K., Gotoh N., Nishino T. 2001. Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: Penem resistance mechanisms and their interplay. Antimicrob. Agents Chemother. 45 (7), 1964–1971. https://doi.org/10.1128/AAC.45.7.1964–1971.2001
  18. Bornet C., Davin-Regli A., Bosi C., Pages J.M., Bollet C. 2000. Imipenem resistance of Enterobacter aerogenes mediated by outer membrane permeability. J. Clin. Microbiol. 38 (3), 1048–1052. doi: 10.1128/jcm.38.3.1048–1052.2000
  19. Mortimer P.G.S., Piddok L.J.V. 1993. The accumulation of five antibacterial agents in porin-deficient mutants of Escherichia coli. J. Antimicrob. Chemother. 32 (2), 195–213. https://doi.org/10.1093/jac/32.2.195
  20. Mahendran K.R., Kreir M., Weingart H., Fertig N., Winterhalter M. 2010. Permeation of antibiotics through Escherichia coli OmpF and OmpC porins. J. Biomol. Screen. 15 (3), 302–307.doi: 10.1177/1087057109357791
  21. Mahendran K.R., Hajjar E., MacH T., Lovelle M., Kumar A., Sousa I., Spiga E., Weingart H., Gameiro P., Winterhalter M., Ceccarelli M. 2010. Molecular basis of enrofloxacin translocation through OmpF, an outer membrane channel of Escherichia coli — When binding does not imply translocation. J. Phys. Chem. B. 114 (15), 5170–5179. https://doi.org/10.1021/jp911485k
  22. Mach T., Neves P., Spiga E., Weingart H., Winterhalter M., Ruggerone P., Ceccarelli M., Gameiro P. 2008. Facilitated permeation of antibiotics across membrane channels — Interaction of the quinolone moxifloxacin with the OmpF channel. J. Am. Chem. Soc. 130 (40), 13301–13309. https://doi.org/10.1021/ja803188c
  23. Bajaj H., Acosta-Gutierrez S., Bodrenko I., Malloci G., Scorciapino M.A., Winterhalter M., Ceccarelli M. 2017. Bacterial outer membrane porins as electrostatic nanosieves: exploring transport rules of small polar molecules. ACS Nano. 11 (6), 5465–5473. https://doi.org/10.1021/acsnano.6b08613
  24. Nestorovich E.M., Danelon C., Winterhalter M., Bezrukov S.M. 2002. Designed to penetrate: Time-resolved interaction of single antibiotic molecules with bacterial pores. Proc. Natl. Acad. Sci. USA. 99 (15), 9789–9794. https://doi.org/10.1073/pnas.152206799
  25. Kojima S., Nikaido H. 2013. Permeation rates of penicillins indicate that Escherichia coli porins function principally as nonspecific channels. Proc. Natl. Acad. Sci. USA. 110 (28), 2629–2634. https://doi.org/10.1073/pnas.1310333110
  26. Bafna J.A., Pangeni S., Winterhalter M., Aksoyoglu M.A. 2020. Electroosmosis dominates electrophoresis of antibiotic transport across the outer membrane porin F. Biophys. J. 118 (11), 2844–2852. https://doi.org/10.1016/j.bpj.2020.04.011
  27. Gaussian 16W. Version 1.1. Gaussian Inc., Wallingford (CT), 2019.
  28. Khomenko V.A., Portnyagina O.Y., Novikova O.D., Isaeva M.P., Kim N.Y., Likhatskaya G.N., Vostrikova O.P., Solov’eva T.F. 2008. Isolation and characterization of recombinant OmpF-like porin from the Yersinia pseudotuberculosis outer membrane. Russ. J. Bioorg. Chem. 34 (2), 162–168. https://doi.org/10.1134/s1068162008020040
  29. Mueller P., Rudin D.O., Ti Tien H., Wescott W.C. 1962. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature. 194 (4832), 979–980. https://doi.org/10.1038/194979a0
  30. Molecular Operating Environment (MOE), 2019.01; Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2021.
  31. Lee J., Cheng X., Swails J.M., Yeom M.S., Eastman P.K., Lemkul J.A., Wei S., Buckner J., Jeong J.C., Qi Y., Jo S., Pande V.S., Case D.A., Brooks C.L., MacKerell A.D., Klauda J.B., Im W. 2016. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12 (1), 405–413. https://doi.org/10.1021/acs.jctc.5b00935
  32. Lee J., Hitzenberger M., Rieger M., Kern N.R., Zacharias M., Im W. 2020. CHARMM-GUI supports the Amber force fields. J. Chem. Phys. 153 (3), 035103–035109. https://doi.org/10.1063/5.0012280
  33. Case D.A., Babin V., Berryman J.T., Betz R.M., Cai Q., Cerutti D.S., Cheatham III T.E., Darden T.A., Duke R.E., Gohlke H.; Goetz A.W., Gusarov S., Homeyer N., Janowski P., Kaus J., Kolossváry I., Kovalenko A., Lee T.S., LeGrand S., Luchko T., Luo R., Madej B., Merz K.M., Paesani F., Roe D.R., Roitberg A., Sagui C., Salomon-Ferrer R., Seabra G., Simmerling C.L., Smith W., Swails J., Walker R.C., Wang J., Wolf R.M., Wu X., Kollman P.A. (2014), AMBER14, University of California, San Francisco.
  34. Dickson C. J., Madej B.D., Skjevik Å.A., Betz R.M., Teigen K., Gould I.R., Walker R.C. 2014. Lipid14: The amber lipid force field. J. Chem. Theory Comput. 10 (2), 865–879. https://doi.org/10.1021/ct4010307
  35. Jorgensen W. L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. 1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79 (2), 926–935. https://doi.org/10.1063/1.445869
  36. Methods for dilution of antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard — 10th Edition. CLSI Document M07-A10. (2015) Clinical and Laboratory Standards Institute, Wayne, PA. Available from: http://www.eucast.org.
  37. Samson R.A. 1974. Paecilomyces and some allied hyphomycetes. Studies in mycology. (6), 1–119.
  38. Ahumada A. A., Seeck J., Allemandi D., Manzo R.H. 1993. The pH/solubility profile of norfloxacin. S.T.R. Pharma Sciences. 3 (3), 250–253.
  39. Reed A. E., Weinstock R.B., Weinhold F. 1985. Natural population analysis. J. Chem. Phys. 83 (2), 735–746. https://doi.org/10.1063/1.449486.
  40. Reed A. E., Weinhold F. 1985. Natural localized molecular orbitals. J. Chem. Phys. 83 (4), 1736–1740. https://doi.org/10.1063/1.449360
  41. Malloci G., Vargiu A.V., Serra G., Bosin A., Ruggerone P., Ceccarelli M. 2015. A database of force-field parameters, dynamics, and properties of antimicrobial compounds. Molecules. 20 (8), 13997–14021. https://doi.org/10.3390/molecules200813997.
  42. Hoenger A., Pagès J.M., Fourel D., Engel A.1993. The orientation of porin OmpF in the outer membrane of Escherichia coli. J. Mol. Biol. 233 (3), 400–413. https://doi.org/10.1006/jmbi.1993.1520
  43. Danelon C., Brando T., Winterhalter M. 2003. Probing the orientation of reconstituted maltoporin channels at the single-protein level. J. Biol. Chem. 278 (237), 35542–35551. https://doi.org/10.1074/jbc.M305434200
  44. Tanabe M., Nimigean C.M., Iverson T.M. 2010. Structural basis for solute transport, nucleotide regulation, and immunological recognition of Neisseria meningitides Por B. Proc. Natl. Acad. Sci. USA. 107 (15), 6811–6816. https://doi.org/10.1073/pnas.0912115107
  45. Likhatskaya G.N., Solov’eva T.F., Novikova O.D., Issaeva M.P., Gusev K.V., Kryzhko I.B., Trifonov E.V., Nurminski E.A. 2005. Homology models of the Yersinia pseudotuberculosis and Yersinia pestis general porins and comparative analysis of their functional and antigenic regions. J. Biomol. Struct. Dyn. 23 (2), 163–174. https://doi.org/10.1080/07391102.2005.10507056
  46. Robertson K. M., Tieleman D.P. 2002. Orientation and interactions of dipolar molecules during transport through OmpF porin. FEBS Lett. 528 (1–3), 53–57. https://doi.org/10.1016/S0014–5793(02)03173–3
  47. Danelon C., Nestorovich E.M., Winterhalter M., Ceccarelli M., Bezrukov S.M. 2006. Interaction of zwitterionic penicillins with the OmpF channel facilitates their translocation. Biophys. J. 90 (5), 1617–1627. https://doi.org/10.1529/biophysj.105.075192
  48. Сama J., Bajaj H., Pagliara S., Maier T., Braun Y., Winterhalter M., Keyser U.F. 2015. Quantification of fluoroquinolone uptake through the outer membrane channel OmpF Escherichia coli. J. Am. Chem. Soc. 137 (43), 13836–13843. https://doi.org/10.1021/jacs.5b08960
  49. Prigogine I., Stuart A.R. 1999. Hydrogen bonds with large proton polarizability and proton transfer processes in electrochemistry and biology. Adv. Chem. Phys. 111, 1–217. https://doi.org/10.1002/9780470141700.CH1
  50. Woldegiorges K., Belay A., Kebede A., Abebe T. 2021. Estimating the ground and excited state dipole moments of levofloxacin and norfloxacin drugs using solvatochromic effects and computational work. J. Spectroscopy. Article ID7214182. https://doi.org/10.1155/2021/7214182
  51. Van Gelder P., Dumas F., Rosenbusch J.P., Winterhalter M. 2000. Oriented channels reveal asymmetric energy barriers for sugar translocation through maltoporin of Escherichia coli. Eur. J. Biochem. 267 (1), 79–84. https://doi.org/10.1046/j.1432–1327.2000.00960.x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural formulas of norfloxacin (1) and its salts, monohydrochloride (2) and dihydrochloride (3).

Download (151KB)
3. Fig. 2. Structures of the four theoretically possible forms of the norfloxacin molecule.

Download (73KB)
4. Fig. 3. Total conductance of YpOmpF porin channels in the absence (left part) and upon addition (right part) of norfloxacin monohydrochloride (a). Current recording through a single YpOmpF channel in the presence of antibiotic (b). Aqueous phase: 1 M KCl, 10 mM Tris-HCl, 10 mM MES, 10 mM beta-alanine, 200 ng/mL protein (a) and 20 ng/mL (b). Membrane potential 50 mV (a) and -100 to +100 mV (b). On the ordinate axis is the ionic current through the membrane, mA.

Download (232KB)
5. Fig. 4. Results of electrophysiological experiments with norfloxacin monohydrochloride (b and c) and dihydrochloride (d and e) on single channels of the non-specific porin OmpF of Y. pseudotuberculosis.

Download (503KB)
6. Fig. 5. Spatial organization of probable complexes of YpOmpF with Nf-HCl. 3D structure of the YpOmpF porin homotrimer, two subunits are represented as a molecular surface, one as a ribbon diagram, lipids and water surroundings have been removed for clarity. NfH+1 (a) and Nf2H+2 (b) molecules in the two binding sites are shown in globular representation, in the trans-position in pink and blue, in the cis-position in yellow and green, respectively, the surrounding amino acid residues are shown in rod representation. 2D-diagrams of intermolecular interactions of NfH+1 (a) and Nf2H+2 (b) in both binding sites are shown in the footnotes.

Download (222KB)
7. Fig. 6. Spatial organization of probable complexes of YpOmpF with NfH+1 and Nf2H+2. 3D structure of the porin monomer YpOmpF, as a ribbon diagram, part of the β-strand, lipids and aqueous surroundings have been removed for clarity. NfH+1 (blue, bottom inset) and Nf2H+2 (brown, top inset) molecules in the NBS3 binding site are shown in a spherical rod representation. 2D diagrams of noncovalent intermolecular interactions of NfH+1 (upper inset) and Nf2H+2 (lower inset) with YpOmpF are shown in the footnotes.

Download (153KB)
8. Fig. 7. Spatial organization of probable complexes of Nf with YpOmpF. 3D structure of the porin monomer YpOmpF, in the form of a ribbon diagram, part of the β-tethers, lipids and aqueous surroundings have been removed for clarity. The possible orientations of the Nf molecule (top part in pink and bottom part in blue) in the EQ are given in spherical rod representation, residues responsible for Nf binding are given in rod representation and labeled. Ionic interactions are indicated by blue surfaces, hydrogen bonds by gray rods.

Download (278KB)
9. Fig. 8. Energy barrier profiles during translocation of charged forms of norfloxacin (NfH+1 and Nf2H+2) through the OmpF channel of Y. pseudotuberculosis.

Download (112KB)

Copyright (c) 2024 The Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies