ATP Causes Contraction of Denervated Skeletal Muscles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work we investigated the ability of humoral agonists (and their stable analogues) to induce contractions in mouse denervated m. soleus and m. EDL. Previously, we had found a change in the effectiveness of the modulating effect of ATP under the influence of some non-physiological factors in the neuromuscular synapses of rodents. The aim of this study is to evaluate the effect of ATP on the contractility of isolated skeletal muscles of mice after traumatic denervation. It was shown that 28-day denervation led to an increase in the strength of contractions of m. soleus and m. EDL induced by an acetylcholine analog. The application of ATP caused the contraction of denervated but not intact muscles. In the presence of a non-selective antagonist of the P2 receptors suramin, the effect of ATP ceased. We assume that the observed ATP-induced contraction can be accounted for by activation of postsynaptic P2X receptors in denervated muscles. Apparently, this effect is caused by an increase in the expression of postsynaptic receptors in response to a violation of neurotrophic control and the conductive ability of the nerve fiber.

About the authors

A. E. Khairullin

Kazan State Medical University; Kazan Federal University

Author for correspondence.
Email: khajrulli@ya.ru
Russia, 420012, Kazan; Russia, 420008, Kazan

A. Y. Teplov

Kazan State Medical University

Email: khajrulli@ya.ru
Russia, 420012, Kazan

S. N. Grishin

Kazan State Medical University

Email: khajrulli@ya.ru
Russia, 420012, Kazan

A. U. Ziganshin

Kazan State Medical University

Email: khajrulli@ya.ru
Russia, 420012, Kazan

References

  1. Ralevic V., Burnstock G. 1998. Receptors for purines and pyrimidines. Pharmacol. Rev. 50, 413–492.
  2. Macintosh B.R., Holash R.J., Renaud J.M. 2012. Skeletal muscle fatigueregulation of excitation-contraction coupling to avoid metabolic catastrophe. J. Cell. Sci. 125, 2105–2114.
  3. Becq F. 2010. CFTR channels and adenosine triphosphate release: The impossible rendez-vous revisited in skeletal muscle. J. Physiol. 588, 4605–4606.
  4. Khairullin A.E., Ziganshin A.U., Grishin S.N. 2020. The influence of hypothermia on purinergic synaptic modulation in the rat diaphragm. Biophysics. 65 (5), 858–862.
  5. Ziganshin A.U., Kamaliev R.R., Gabdrakhmanov A.I., Khairullin A.E., Grishin S.N. 2018. Foot-shock stimulation decreases the inhibitory action of ATP on contractility and end-plate current of frog sartorius muscle. Int. J. Pharmacol. 14, 1198–1202.
  6. Sandonà D., Danieli-Betto D., Germinario E., Biral D., Martinello T., Lioy A., Tarricone E., Gastaldello S., Betto R. 2005. The T-tubule membrane ATP-operated P2X4 receptor influences contractility of skeletal muscle. FASEB J. 19, 1184–1186.
  7. Романов Р.А., Колесников С.С. 2011. Первичные медиаторы. Методы и подходы для исследования секреции. Биол. мембраны. 28 (1), 3–13.
  8. Sleigh J.N., Burgess R.W., Gillingwater T.H., Cader M.Z. 2014. Morphological analysis of neuromuscular junction development and degeneration in rodent lumbrical muscles. J. Neurosci. Methods. 227, 159–165.
  9. Burnstock G., Arnett T.R., Orriss I.R. 2013. Purinergic signaling in the musculoskeletal system. Purinergic Signal. 9, 541–572.
  10. Schweitzer E. 1987. Coordinated release of ATP and ACh from cholinergic synaptosomes and its inhibition by calmodulin antagonists. J. Neurosci. 7, 2948–2956.
  11. Khairullin A.E., Teplov A.Y., Grishin S.N., Farkhutdinov A.M., Ziganshin A.U. 2019. The thermal sensitivity of purinergic modulation of contractile activity of locomotor and respiratory muscles in mice. Biophysics. 64 (5), 812–817.
  12. Маломуж А.И., Никольский Е.Е. 2010. Неквантовое освобождение медиатора: миф или реальность? Усп. физиол. наук. 41 (2), 27–43.
  13. Galkin A.V., Giniatullin R.A., Mukhtarov M.R., Grishin S.N., Švandová I., Vyskočil F. 2001. ATP but not adenosine inhibits nonquantal acetylcholine release at the mouse neuromuscular junction. Eur. J. Neurosci. 13 (11), 2047–2053.
  14. Cisterna B.A., Vargas A.A., Puebla C., Fernández P., Escamilla R., Lagos C.F., Matus M.F., Vilos C., Cea L.A., Barnafi E., Gaete H., Escobar D.F., Cardozo C.P., Sáez J.C. 2020. Active acetylcholine receptors prevent the atrophy of skeletal muscles and favor reinnervation. Nat. Commun. 11 (1), 1073.
  15. Fu W.M. 1994. Potentiation by ATP of the postsynaptic acetylcholine response at developing neuromuscular synapses in Xenopus cell cultures. J. Physiol. 477, 449–458.
  16. Fu W.M. 1995. Regulatory role of ATP at developing neuromuscular junctions. Prog. Neurobiol. 47 (1), 31–44.
  17. Lu Z., Smith D.O. 1991. Adenosine 5'-triphosphate increases acetyltholine channel-opening frequency in rat skeletal muscle. J. Physiol. (Lond.). 436, 45–56.
  18. Mozrzymas J.W., Ruzzier F. 1992. ATP activates junctional and extrajunctional acetylcholine receptor channels in isolated adult rat muscle fibres. Neurosci. Lett. 139 (2), 217–220.
  19. Igusa Y. 1988. Adenosine 5'-triphosphate activates acetylcholine receptor channels in cultured Xenopus myotomal muscle cells. J. Physiol. (Lond.). 405, 169–185.
  20. Carlson B.J., Raftery M.A. 1993. Specific binding of ATP to extracellular sites on Torpedo acetylcholine receptor. Biochem. 32, 7329–7333.
  21. Kostrominova T.Y. 2022. Skeletal muscle denervation: Past, present and future. Int. J. Mol. Sci. 23 (14), 7489.
  22. Banachewicz W., Supłat D., Krzemiński P., Pomorski P., Barańska J. 2005. P2 nucleotide receptors on C2C12 satellite cells. Purinergic Signal. 1 (3), 249–257.
  23. Ryten M., Hoebertz A., Burnstock G. 2001. Sequential expression of three receptor subtypes for extracellular ATP in developing rat skeletal muscle. Dev. Dyn. 221, 331–341.
  24. Burnstock G., Kennedy C. 2011. P2X receptors in health and disease. Adv. Pharmacol. 61, 333–372.
  25. Burnstock G., Verkhratsky A. 2009. Evolutionary origins of the purinergic signalling system. Acta Physiol. (Oxf). 195 (4), 415–447.
  26. Khairullin A.E., Grishin S.N., Gabdrahmanov A.I., Ziganshin A.U. 2023. Effects of ATP on time parameters of contractility of rats’ slow and fast skeletal muscles in normal and hypothermic conditions. Muscles. 2, 23–35.
  27. Khairullin A.E., Grishin S.N., Eremeev A.A. 2019. Synaptic aspects of hypogravity motor syndrome. Biophysics. 64 (5), 828–835.
  28. Grishin S.N., Gabdrakhmanov A.I., Khairullin A.E., Ziganshin A.U. 2017. The Influence of glucocorticoids and catecholamines on the neuromuscular transmission. Biochem. Moscow Suppl. Ser. A. 11, 253–260.
  29. Khairullin A.E., Grishin S.N., Ziganshin A.U. 2023. P2 receptor signaling in motor units in muscular dystrophy. Int. J. Mol. Sci. 24, 1587.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (173KB)

Copyright (c) 2023 The Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».