Spectral Characteristics of the Plant Cell Surface: Occurrence of Azulenes and Biogenic Amines

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Spectral properties of the surface of plant cells at various evolutionary levels from unicellular (diatoms, horsetail, and fern spores) to multicellular (woody and herbaceous species) organisms have been studied. It was shown that the surface layers of the cuticle and cell wall of a number of analyzed plants included antioxidants – blue pigments azulenes. Using histochemical methods, it was found that neurotransmitter compounds – biogenic amines – are present as excretions on the entire surface or specialized secretory structures of leaves. Under conditions of high salt concentration, dopamine and histamine are secreted, which is blocked by the addition of exogenous azulene and proazulene grosshemine. It is assumed that the azulene-containing surface protects cells from the formed reactive oxygen species and biogenic amines that are toxic at high concentrations.

Авторлар туралы

V. Roshchina

Institute of Cell Biophysics, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center
for Biological Research of the Russian Academy of Sciences”

Хат алмасуға жауапты Автор.
Email: roshchinavic@mail.ru
Russia, 142290, Moscow oblast, Pushchino

V. Yashin

Institute of Cell Biophysics, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center
for Biological Research of the Russian Academy of Sciences”

Email: roshchinavic@mail.ru
Russia, 142290, Moscow oblast, Pushchino

A. Kunyev

Institute of Cell Biophysics, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center
for Biological Research of the Russian Academy of Sciences”

Email: roshchinavic@mail.ru
Russia, 142290, Moscow oblast, Pushchino

Әдебиет тізімі

  1. Рощина В.Д., Рощина В.В. 1989. Выделительная функция высших растений. М.: Наука. 214 с.
  2. Рощина В.В., Кучин А.В., Куньев А.Р., Солтани Г.А., Хайбулаева Л.М., Призова Н.К. 2022. Присутствие азуленов на поверхности растительных клеток как тест на чувствительность к озону. Биол. мембраны. 39 (1), 54–62.
  3. Рощина В.В. 1991. Биомедиаторы в растениях. Ацетилхолин и биогенные амины. Пущино: Биологический центр РАН. 192 с.
  4. Roshchina V.V. Yashin V.A. 2014. Neurotransmitters catecholamines and histamine in allelopathy: Plant cells as models in fluorescence microscopy. Allelopathy J. 34 (1), 1–16.
  5. Roshchina V.V., Yashin V.A., Kuchin A.V. 2015. Fluorescent analysis for bioindication of ozone on unicellular models. J. Fluorescence. 25 (3), 595–601. https://doi.org/10.1007/s10895-015-1540-2
  6. Li C., Sun X., Chang C., Jia D., Wei Z., Li C., Ma F. 2015. Dopamine alleviates salt-induced stress in Malus hupehensis. Physiol. Plantarum. 153, 584–602.
  7. Liu Q, GaoT, Liu W., Liu Y, Zhao Y., Li W., Ding K., Ma F. Li C. 2020. Functions of dopamine in plants: A review. Plant Signal. Behav. 15 (12), 1827782. https://doi.org/10.1080/15592324.2020.1827782
  8. Roshchina, V.V. Prizova N.K., Khaibulaeva L.M. 2019. Allelopathy experiments with Chara algae model. Histochemical analysis of the participation of neurotransmitter systems in water inhabitation. Allelopathy J. 46 (1), 17–24.
  9. Oleskin A.V., Postnov A.L. 2022. Neurotransmitters as communicative agents in aquatic ecosystems. Moscow Univ. Biol. Sci. Bull. 77 (1), 6–12. https://doi.org/10.3103/S0096392522010035
  10. Oleskin A.V. Postnov A.L., Boyang C. 2021. Impact of biogenic amines on the growth of green microalgae. J. Pharm. Nutr. Sci. 1 (11), 144–150. https://doi.org/10.29169/1927-5951.2021.11.17
  11. Roshchina V.V., Yashin V.A., Podunay Yu.A. 2022. Fluorescence in the study of diatom Ulnaria ulna cells. Austin Environ. Sci. 7(3), 107–110.
  12. Рощина В.В., Мельникова Е.В, Яшин В.А., Карнаухов В.Н. 2002. Автофлуоресценция интактных спор хвоща Equisetum arvense L. в процессе их развития. Биофизика 7 (2), 318–324.
  13. Золотарев В.М. 2012. Применение дифференцирования в спектроскопии отражения. Оптика и спектроскопия. 112 (1), 150–154.
  14. Roshchina V.V.,Yashin V.A., Kuchin A.V., Kulakov V.I. 2014. Fluorescent analysis of catecholamines and histamine in plant single cells. Int. J. Biochem., Photon 195, 344–351.
  15. Рощина В.В., Яшин В.А., Кучин А.В . 2016. Флуоресценция нейротрансмиттеров и их рецепция в растительной клетке. Биол. Мембраны. 33 (2), 105–112.
  16. Акулова Е.А., Рощина В.В. 1977. Фотосинтетический электронный транспорт на уровне цитохрома f и пластоцианина. Биохимия 42 (12), 2140–2148.
  17. Roshchina V.V. 2023. Plant leaf surface as a sensory system in allelopathic relations: Role of azulenes. Allelopathy J. 59 (2). https://doi.org/10.26651/allele.j/2023-59-2
  18. Roshchina V.V. 2008. Fluorescing World of Plant Secreting Cells. Enfield, Jersey (USA), Plymouth: Science Publisher. 338 p.
  19. Saleh M.A., Abdel-Moein N.M., Ibrahim N.A. 1984. Insect antifeeding azulene derivative from the brown alga Dictyota dichotoma. J. Agricultural Food Chem. 32 (6), 1432–1434.
  20. Cano L.P.P., Manfredi R.Q., Perez M.,Garcia M., Blustein G., Cordeiro R., Perez C., Schejter L., Palermo J.A. 2018. Isolation and antifouling activity of azulene derivatives from the antarctic gorgonian Acanthogorgia laxa. Chem. Biodivers. 15, e1700425.
  21. Коновалов Д.А. 1995. Природные азулены. Растительные ресурсы. 31 (1), 101–130.
  22. Рощина В.В., Призова Н.К., Хайбулаева Л.М. 2022. Азулены листовой поверхности как защитный оптический фильтр. Актуальные вопросы биол. физики и химии. 7 (1), 36–39.
  23. Bakun P., Czarczynska-Goslinska, B., Goslinski T., Lijewski S. 2021. In vitro and in vivo biological activities of azulene derivatives with potential applications in medicine. Med. Chem. Res. 30, 834–846. https://doi.org/10.1007/s00044-021-02701-0
  24. Murfin L.C., Lewis S.E .2021. Azulene – a Bright core fore sensing and imaging. Molecules. 26 (2), 353–362. https://doi.org/10.3390/molecules26020353
  25. Roshchina V.V., Konovalov D.A. 2022. Single cell plant model of Equisetum arvense for the study antihistamine effects of azulene and sesquiterpene lactones. Future Pharm. 2 (2), 126–134.
  26. Gao T., Zhang Z., Liu X., Wu Q., Chen Q., Liu Q., van Nocker S., Ma F., Li C. 2020. Physiological and transcriptome analyses of the effects of exogenous dopamine on drought tolerance in apple. Plant Physiol. Biochem. 148, 260–272.
  27. Jiao C., Lan G., Sun,Y., Wang G., Sun Y. 2021. Dopamine alleviates chilling stress in watermelon seedlings via modulation of proline content, antioxidant enzyme activity, and polyamine metabolism. J. Plant Growth Regul. 40 (1), 277–292. https://doi.org/10.1007/s00344-020-10096-2
  28. Roshchina V.V. 2022. Biogenic amines in plant cell at norma and stress: Probes for dopamine and histamine. In: Emerging Plant Growth Regulators in Agriculture. Roles in Stress Tolerance . Eds Amsterdam: Elsevier Naeem M. and Tariq Aftab.p. 357–376.
  29. Жимова Н.С., Любовцева Л.А., Гурьянова Е.А., Мулендиев С.В. 2007. Люминесцентно гистохимическое исследование гистамина в структурах кожи после обработки гиалуроновой кислотой. Вестник Оренбургского гос. университета. 6, 109–117.
  30. Племенков В.В., Янилкин В.В., Палей Р.В., Нго Бакопки Б., Морозов В.Н., Максимюк Н.Н. 2001. Реакции одноэлектронного окисления и восстановления сульфидов азуленового ряда. Журн. орг. химии. 71 (3), 494–500.
  31. Roshchina V.V. 1990. Biomediators in chloroplasts of higher plants. 3. Effect of dopamine on photochemical activity. Photosynthetica. 24 (1), 117–121.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (1MB)
3.

Жүктеу (292KB)
4.

Жүктеу (947KB)
5.

Жүктеу (84KB)

© The Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>