Assessment of the Toxic Effect of 2-(Chlorodinitromethyl)-4-Methoxy-6-(4-Methylpiperazine-1-yl)-1,3,5-Triazine by Respiratory Activity of Lymphocytes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A method for evaluation of metabolic characteristics of intact cells based on electrochemical registration of their respiratory activity was used to monitor a reaction of lymphocytes to a potential pharmacological agent, 2-(chlorodinitromethyl)-4-methoxy-6-(4-methylpiperazin-1-yl)-1,3,5-triazine. The method ensured an estimation of cytotoxicity of the test compound and made it possible to determine its minimum toxic concentrations for human lymphocytes. It was shown that the obtained results agree with the data of a reference method – MTT-based cell viability assay.

About the authors

P. V. Iliasov

Samara State Medical University, Ministry of Health of the Russian Federation

Email: a.i.sizova@samsmu.ru
Russia, 443099, Samara

L. V. Limareva

Samara State Medical University, Ministry of Health of the Russian Federation

Email: a.i.sizova@samsmu.ru
Russia, 443099, Samara

A. I. Sizova

Samara State Medical University, Ministry of Health of the Russian Federation

Author for correspondence.
Email: a.i.sizova@samsmu.ru
Russia, 443099, Samara

V. A. Zalomlenkov

Samara State Technical University

Email: a.i.sizova@samsmu.ru
Russia, 443100, Samara

A. P. Kuricyna

Samara State Medical University, Ministry of Health of the Russian Federation

Email: a.i.sizova@samsmu.ru
Russia, 443099, Samara

References

  1. Афанасьева А.Н., Сапарова В.Б., Сельменских Т.А., Макаренко И.Е. 2021. Выбор оптимального метода детекции жизнеспособности клеточных культур для тестов на пролиферативную активность и цитотоксичность. Лабораторные животные для научных исследований. 2, 16–24.
  2. Bartholomew E.F., Martini F.H., Nath J.L. 2018. Fundamentals of anatomy and physiology. Global edition. Harlow: Pearson Education Limited. 1306 p.
  3. Azevedo A.M., Prazeres D.M.F., Cabral J.M.S., Fonseca L.P. 2005. Ethanol biosensors based on alcohol oxidase. Biosens. Bioelectronics. 21 (2), 235–247.
  4. Bachmann T.T., Bilitewski U., Schmid R.D. 1998. A microbial sensor based on pseudomonas putida for phenol, benzoic acid and their monochlorinated derivatives which can be used in water and n-hexane. Analyt. Lett. 31 (14), 2361–2373.
  5. Ziegler F.D., Strickland E.H., Anthony A. 1962. Oxidative phosphorylation and respiratory regulation in rat liver homogenates measured with the oxygen electrode. Rep. US Army Med. Res. Lab. 1–25.
  6. Voss D.O., Cowles J.C., Bacila M. 1963. A new oxygen electrode model for the polarographic assay of cellular and mitochondrial respiration. Anal. Biochem. 6, 211–222.
  7. Holtzman D., Moore C.L. 1971. A micro-method for the study of oxidative phosphorylation. Biochim. Biophys. Acta. 234 (1), 1–8.
  8. Gaylor J.L., Miyake Y., Yamano T. 1975. Stoichiometry of 4-methyl sterol oxidase of rat liver microsomes. J. Biol. Chem. 250 (18), 7159–7167.
  9. Tedjo W., Chen T. 2020. An integrated biosensor system with a high-density microelectrode array for real-time electrochemical imaging. IEEE Trans. Biomed. Circuits Syst. 14 (1), 20–35.
  10. Rajendran S.T., Huszno K., Debowski G., Sotres J., Ruzgas T., Boisen A., Zor K. 2021. Tissue-based biosensor for monitoring the antioxidant effect of orally administered drugs in the intestine. Bioelectrochemistry. 138, 107720.
  11. Cai Y., Wang M., Xiao X., Liang B., Fan S., Zheng Z., Cosnier S., Liu A. 2022. A membraneless starch/O2 biofuel cell based on bacterial surface regulable displayed sequential enzymes of glucoamylase and glucose dehydrogenase. Biosens. Bioelectron. 207, 114197.
  12. Emelyanova E.V., Antipova T.V. 2022. Biosensor approach for electrochemical quantitative assessment and qualitative characterization of the effect of fusaric acid on a culture-receptor. J. Biotechnol. 357, 1–8.
  13. Hiramoto K., Yasumi M., Ushio H., Shunori A., Ino K., Shiku H., Matsue T. 2017. Development of oxygen consumption analysis with an on-chip electrochemical device and simulation. Anal. Chem. 89 (19), 10 303–10 310.
  14. Rejmstad P., Johansson J.D., Haj-Hosseini N., Wardell K. 2017. A method for monitoring of oxygen saturation changes in brain tissue using diffuse reflectance spectroscopy. J. Biophotonics. 10 (3), 446–455.
  15. Thews O., Vaupel P. 2015. Spatial oxygenation profiles in tumors during normo- and hyperbaric hyperoxia. Strahlenther Onkol. 191 (11), 875–882.
  16. Lau J.C., Linsenmeier R.A. 2012. Oxygen consumption and distribution in the long-evans rat retina. Exp. Eye Res. 102, 50–58.
  17. Sakr Y. 2010. Techniques to assess tissue oxygenation in the clinical setting. Transfus. Apher. Sci. 43 (1), 79–94.
  18. Godsman N., Kohlhaas M., Nickel A., Cheyne L., Mingarelli M., Schweiger L., Hepburn C., Munts C., Welch A., Delibegovic M., Van Bilsen M., Maack C., Dawson D.K. 2022. Metabolic alterations in a rat model of Takotsubo syndrome. Cardiovasc. Res. 118 (8), 1932–1946.
  19. Pandya J.D., Sullivan P.G., Leung L.Y., Tortella F.C., Shear D.A., Deng-Bryant Y. 2016. Advanced and high-throughput method for mitochondrial bioenergetics evaluation in neurotrauma. Methods Mol. Biol. 1462, 597–610.
  20. Divakaruni A.S., Rogers G.W., Murphy A.N. 2014. Measuring mitochondrial function in permeabilized cells using the Seahorse XF analyzer or a Clark-type oxygen electrode. Curr. Protoc. Toxicol. 60, 25.2.1–25.2.16.
  21. Vial G., Guigas B. 2018. Assessing mitochondrial bioenergetics by respirometry in cells or isolated organelles. Methods Mol. Biol. 1732, 273–287.
  22. Silva A.M., Oliveira P.J. 2012. Evaluation of respiration with clark type electrode in isolated mitochondria and permeabilized animal cells. Methods Mol. Biol. 810, 7–24.
  23. Mitchell R.J., Gu M.B. 2004. An escherichia coli biosensor capable of detecting both genotoxic and oxidative damage. Appl. Microbiol. Biotechnol. 64 (1), 46–52.
  24. Mungroo N.A., Neethirajan S. 2014. Biosensors for the detection of antibiotics in poultry industry-a review. Biosensors (Basel). 4 (4), 472–493.
  25. Чепкова И.Ф., Ануфриев М.А., Понаморева О.Н., Алферов В.А., Решетилов А.Н., Щеглова В.А., Петрова С.Н. 2010. Применение биосенсора на основе иммобилизованных микроорганизмов для оценки токсичности продукции бытового назначения и товаров для детей. Токсикол. вестник. 1 (100), 34–40.
  26. Polyak B., Marks R., Rode A., Rettberg P., Horneck G., Baumstark-Khan C. 2001. Comparison between two assay formats: Fiber optic Rec a lux sensor and SOS-lux assay in suspension and comparison between two reporter bacterial cells (Escherichia coli DPD1718 and Salmonella typhimurium TA1535). BIOSET: Biosensors for Environmental Technology. 8, 13–18.
  27. Ковтун С.В. 2009. Исследования выбросов от автотранспортных потоков методом биолюминесценции. Горный информационно-аналитический бюллетень. S18, 118–121.
  28. Agilent Technologies Inc. How Agilent Seahorse XF analyzers work | Agilent. https://www.agilent.com/en/ products/cell-analysis/how-seahorse-xf-analyzers-work [Электронный ресурс] (дата обращения: 23.03.2023).
  29. Ильясов П.В., Гусева О.С., Курицына А.П., Лимарева Л.В. 2023. Оценка физиолого-биохимических характеристик клеток на основе регистрации их респираторной активности при воздействии субстратов и токсических веществ. Гены и клетки. (в печати).
  30. Gidaspov A.A., Bakharev V.V., Kachanovskaya E.V., Kosareva E.A., Galkina M.V., Ekimova E.V., Yakunina N.G., Bulychev Y.N. 2004. Synthesis and cytotoxic activity of halogen-containing dinitromethyl-1,3,5-triazine derivatives. Pharm. Chem. J. 38 (8), 411–419.
  31. Трещалина Е.М., Жукова О.С., Герасимова Г.К., Андронова Н.В., Гарин А.М. 2005. Методические указания по изучению противоопухолевой активности фармакологических веществ. В кн.: Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ. Ред. Хабриев Р.У. Москва: Медицина, с. 637–674.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (28KB)
3.

Download (93KB)
4.

Download (67KB)
5.

Download (41KB)
6.

Download (133KB)

Copyright (c) 2023 The Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».