Разработка самовосстанавливающихся полиуретановых материалов с повышенными механическими свойствами и высокой эффективностью их восстановления

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Впервые синтезированы и изучены самовосстанавливающиеся полиуретановые блоксополимеры с тестовым содержанием “жесткого” блока 60 мас.% на основе удлинителей цепи, полученных путем обратимой реакции Дильса–Альдера между фурфуриловым спиртом и бисмалеимидами, содержащими фрагменты с различными донорно-акцепторными свойствами. Степень влияния полученных по реакции Дильса–Альдера удлинителей цепи и выбранного значения массового содержания “жесткого” блока на структурные особенности синтезированных полимеров изучены с помощью ИК-спектроскопии. По результатам дифференциальной сканирующей калориметрии определены температурные переходы и циклические характеры прямой и ретрореакций Дильса–Альдера. Исследованы механические свойства исходных и восстановленных образцов полиуретановых блоксополимеров, проведена количественная оценка эффективности самовосстановления модуля Юнга и предела прочности при разрыве. Визуальная оценка способности материалов к самовосстановлению проводилась с помощью сканирующей электронной микроскопии. Предложенный авторами статьи подход в разработке самовосстанавливающихся полиуретановых материалов позволил получить материалы, характеризующиеся одновременно превосходными механическими свойствами (модуль Юнга ~1124–1465 МПа, предел прочности при разрыве ~33–38 МПа) и эффективностью их восстановления (ηE ~ 85–90% и ησ ~ 92–127%), что значительно выше аналогичных величин для большинства известных самовосстанавливающихся полиуретанов. Такие исключительные упруго-прочностные свойства и эффективность восстановления разработанных полиуретановых материалов достигаются за счет формирования большого количества межмолекулярных пространственных физических сшивок и повышенной доступности фурановых и малеимидных групп для протекания процесса термоиндуцированного самовосстановления благодаря их концентрации в одной фазе.

Об авторах

З. А. Локьяева

Центр НТИ “Цифровое материаловедение: новые материалы и вещества” МГТУ им. Н.Э. Баумана; Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук

Email: lokyaevazal@gmail.com
Москва, Россия; Москва, Россия

Д. В. Захарова

Центр НТИ “Цифровое материаловедение: новые материалы и вещества” МГТУ им. Н.Э. Баумана; Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук

Email: lokyaevazal@gmail.com
Москва, Россия; Москва, Россия

П. Ф. Пономарева

Центр НТИ “Цифровое материаловедение: новые материалы и вещества” МГТУ им. Н.Э. Баумана; Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук

Email: lokyaevazal@gmail.com
Москва, Россия; Москва, Россия

И. В. Третьяков

Центр НТИ “Цифровое материаловедение: новые материалы и вещества” МГТУ им. Н.Э. Баумана; Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук

Email: lokyaevazal@gmail.com
Москва, Россия; Москва, Россия

И. П. Сторожук

Центр НТИ “Цифровое материаловедение: новые материалы и вещества” МГТУ им. Н.Э. Баумана; Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук

Автор, ответственный за переписку.
Email: lokyaevazal@gmail.com
Москва, Россия; Москва, Россия

Список литературы

  1. Петрова Т.В., Третьяков И.В., Солодилов В.И. // Хим. физика. 2023. Т. 42. № 1. C. 50. https://doi.org/10.31857/S0207401X23010089
  2. Кириллов В.Е., Юрков Г.Ю., Коробов М.С., Воронов А.С., Солодилов В.И. и др. // Хим. физика. 2023. Т. 42. № 11. C. 39. https://doi.org/10.31857/S0207401X23110043
  3. Вяткина М.А., Горбаткина Ю.А., Петрова Т.В., Солодилов В.И. // Хим. физика. 2023. Т. 42. № 11. C. 16. https://doi.org/10.31857/S0207401X23110110
  4. Воробьев А.О., Кульбакин Д.Е., Чистяков С.Г. и др. // Хим. физика. 2023. Т. 42. № 11. C. 9. https://doi.org/10.31857/S0207401X23110109
  5. An Z.W., Xue R., Ye K. et al. // Nanoscale. 2023. V. 15. № 16. P. 6505. https://doi.org/10.1039/D2NR07110J
  6. Zheng B., Liu T., Liu J. et al. // Composites, Part B. 2023.V. 257. P. 110697. https://doi.org/10.1016/j.compositesb.2023.110697
  7. Cheng B.X., Lu C.C., Li Q. et al. // J. Polym. Environ. 2022. V. 30. № 12. P. 5252. https://doi.org/10.1007/s10924-022-02586-z
  8. Chen L., Dai Z., Lou W. et al. // J. Appl. Polym. Sci. 2022. V. 139. № 30. Article 52694. https://doi.org/10.1002/app.52694
  9. Li P.X., Zhang Z.Y., Cui J.Y., et al. // Langmuir. 2024. V. 40. № 23. P. 12250. https://doi.org/10.1021/acs.langmuir.4c01363
  10. Platonova E.O., Ponomareva P.F., Tretyakov I.V. et al. // Polym. Sci. Ser. C. Sel. Top. 2024. V. 66. № 1. P. 160. https://doi.org/10.1134/S1811238224600228
  11. Li Z.F., Xu C.M., Yin S.M., Wen L.R. // Spectrosc. Spect. Anal. (China). 2002. V. 22. P. 774.
  12. Wolinska-Grabczyk A., Kaczmarczyk B., Jankowski A. // Pol. J. Chem. Technol. 2008. V.10. № 4. P. 53. https://doi.org/10.2478/v10026-008-0049-8
  13. Feng L., Yu Z., Bian Y., Lu J., Shi X., Chai C. // Polymer. 2017. V. 124. P.48. https://doi.org/10.1016/j.polymer.2017.07.049
  14. Xiao S., Hossain M.M., Liu P., Wang H., Hu F. et al. // Mater. Des. 2017. V. 132. P. 419. https://doi.org/10.1016/j.matdes.2017.07.016
  15. Functional Polymers / Eds. Abu Jafar M. et al. Cham, Switzerland: Springer Int. Publ., 2018. P. 225. https://doi.org/10.1007/978-3-319-92067-2
  16. Guazzini T., Bronco S., Carignani E. et al. // Eur. Polym. J. 2019. V. 114. P. 298. https://doi.org/10.1016/j.eurpolymj. 2019.02.023
  17. Krol P. // Prog. Mater. Sci. 2007. V. 52. № 6. P. 915. https://doi.org/10.1016/j.pmatsci.2006.11.001
  18. Zakharova D.V., Lok’yaeva Z.A., Pavlov A.A., Polezhaev A.V. // Key Eng. Mater. 2021. V. 899. P. 628. https://doi.org/10.4028/www.scientific.net/kem.899.628
  19. Platonova E.O., Ponomareva P.F., Lokiaeva Z.A. et al. // Polymers. 2022. V. 14. № 24. P. 5394. https://doi.org/10.3390/polym14245394
  20. Yan Q., Zhou M., Fu H. // J. Mater. Chem. C. 2020. V. 8. № 23. P. 7772. https://doi.org/10.1039/C9TC06765E
  21. Zhou X., Wang H., Li S. et al. // Eur. Polym. J. 2021. V. 159. P. 110769. https://doi.org/10.1016/j.eurpolymj.2021.110769
  22. Syed E.A. Master Thesis. Loughborough, UK: Loughborough University, 2021. V. 1. https://doi.org/10.26174/thesis.lboro.15035103
  23. Zhang C. et al. // J. Mol. Model. 2010. V. 16. P. 1391. https://doi.org/10.1007/s00894-010-0645-4
  24. Luo W. et al. // Macromolecules. 1997. V. 30. № 15. P. 4405. https://doi.org/10.1021/ma951386e
  25. Platonova E. et al. // Polymers. 2021. V. 13. № 12. Article 1935. https://doi.org/10.2478/v10026-008-0049-8
  26. Bednarczyk P. et.al. // J. Appl. Polym. Sci. 2023. V. 140. № 32. Article 54266. https://doi.org/10.1002/app.54266
  27. Lokiaeva Z.A., Soboleva J.A., Zakharova D.V., Storozhuk I.P. // E3S Web Conferences. 2023. V. 413. Article 02036. https://doi.org/10.1051/e3sconf/202341302036
  28. Venkatesh D., Jaisankar V. // Mater. Today: Proc. 2019. V. 14. Part 2. P. 482. https://doi.org/10.1016/j.matpr.2019.04.171
  29. Petrova T.V., Tretyakov I.V., Kireynov A.V. et al. // Appl. Sci. 2023. V. 13. Article 6557. https://doi.org/10.3390/app13116557
  30. Behera P., Raut S., Mondal P. et al. // ACS Appl. Polym. Mater. 2021. V. 3. № 2. P. 847. https://doi.org/10.1021/acsapm.0c01179
  31. Jiang H., Yan T., Cheng M. et al. // Mater. Horiz. 2025. V. 12. № 2. P.599. https://doi.org/10.1039/D4MH01129E

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».