Development of self-healing polyurethane materials with enhanced mechanical properties and high recovery efficiency
- Authors: Lokiaeva Z.A.1,2, Zakharova D.V.1,3, Ponomareva P.F.1,2, Tretyakov I.V.1,2, Storozhuk I.P.1,2
-
Affiliations:
- NTI Center “Digital Materials Science: New Materials and Substances” N.E. Bauman Moscow State Technical University
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
- Issue: Vol 44, No 11 (2025)
- Pages: 76-88
- Section: Chemical physics of polymeric materials
- URL: https://journals.rcsi.science/0207-401X/article/view/351697
- DOI: https://doi.org/10.31857/S0207401X25110096
- ID: 351697
Cite item
Abstract
Self-healing polyurethane block copolymers with a test content of the “hard” block of 60 wt.% based on chain extenders obtained by the reversible Diels-Alder reaction between furfuryl alcohol and bismaleimides containing fragments with different donor-acceptor properties have been synthesized and studied for the first time. The degree of influence of the obtained DA chain extenders and the selected mass content of the “hard” block on the structural features of the synthesized polymers have been studied using IR-spectroscopy. Temperature transitions and the cyclic nature of the direct and retro-Diels–Alder reactions have been determined using differential scanning calorimetry. The mechanical properties of the materials have been studied using dynamometric analysis of the original and restored samples of polyurethane block copolymers, and a quantitative assessment of the self-healing efficiency of Young’s modulus and tensile strength has been carried out. Visual assessment of the self-healing ability of the materials was carried out using scanning electron microscopy. It was demonstrated that the approach to the development of self-healing polyurethane materials proposed by the authors of the article made it possible to obtain materials with both excellent mechanical properties (Young’s modulus ~1124–1465 MPa, tensile strength ~33–38 MPa) and the efficiency of their recovery (ηE ~ 85–90% and ησ ~ 92–127%), which is significantly higher than similar values for most known self-healing polyurethanes. It was analyzed that the outstanding elastic-strength properties and the efficiency of recovery of the developed polyurethane materials are provided by the formation of a large number of intermolecular spatial physical crosslinks and increased availability of furan and maleimide groups for the process of thermally induced self-healing due to their concentration in one phase.
About the authors
Z. A. Lokiaeva
NTI Center “Digital Materials Science: New Materials and Substances” N.E. Bauman Moscow State Technical University; Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: lokyaevazal@gmail.com
Moscow, Russia; Moscow, Russia
D. V. Zakharova
NTI Center “Digital Materials Science: New Materials and Substances” N.E. Bauman Moscow State Technical University; Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: lokyaevazal@gmail.com
Moscow, Russia; Moscow, Russia
P. F. Ponomareva
NTI Center “Digital Materials Science: New Materials and Substances” N.E. Bauman Moscow State Technical University; Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: lokyaevazal@gmail.com
Moscow, Russia; Moscow, Russia
I. V. Tretyakov
NTI Center “Digital Materials Science: New Materials and Substances” N.E. Bauman Moscow State Technical University; Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: lokyaevazal@gmail.com
Moscow, Russia; Moscow, Russia
I. P. Storozhuk
NTI Center “Digital Materials Science: New Materials and Substances” N.E. Bauman Moscow State Technical University; Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Author for correspondence.
Email: lokyaevazal@gmail.com
Moscow, Russia; Moscow, Russia
References
- Petrova T.V., Tretyakov I.V., Solodilov V.I. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 177. https://doi.org/10.1134/S1990793123010086
- Kirillov V.E., Yurkov G.Yu., Korobov M.S., Voronov A.S., Solodilov V.I. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1346. https://doi.org/10.1134/S1990793123060040
- Vyatkina M.A., Gorbatkina Yu.A., Petrova T.V., Solodilov V.I. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1323. https://doi.org/10.1134/S1990793123060118
- Vorobyev A.O., Kulbakin D.E., Chistyakov S.G., et al.// Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1316. https://doi.org/10.1134/S1990793123060106
- An Z.W., Xue R., Ye K. et al. // Nanoscale. 2023. V. 15. № 16. P. 6505. https://doi.org/10.1039/D2NR07110J
- Zheng B., Liu T., Liu J. et al. // Composites. Part B. 2023.V. 257. P. 110697. https://doi.org/10.1016/j.compositesb.2023.110697
- Cheng B.X., Lu C.C., Li Q. et al. // J. Polym. Environ. 2022. V. 30. № 12. P.5252. https://doi.org/10.1007/s10924-022-02586-z
- Chen L., Dai Z., Lou W. et al. // J. Appl. Polym. Sci. 2022. V. 139. № 30. Article 52694. https://doi.org/10.1002/app.52694
- Li P.X., Zhang Z.Y., Cui J.Y. et al. // Langmuir. 2024. V. 40. № 23. P. 12250. https://doi.org/10.1021/acs.langmuir.4c01363
- Platonova E.O., Ponomareva P.F., Tretyakov I.V. et al. // Polym. Sci. Ser. C. Sel. Top. 2024. V. 66. P. 160. https://doi.org/10.1134/S1811238224600228
- Li Z.F., Xu C.M., Yin S.M., Wen L.R. // Spectrosc. Spect. Anal. (China). 2002. V. 22. P. 774.
- Wolinska-Grabczyk A., Kaczmarczyk B., Jankowski A. // Pol. J. Chem. Technol. 2008. V.10. № 4. P. 53. https://doi.org/10.2478/v10026-008-0049-8
- Feng L., Yu Z., Bian Y., Lu J., Shi X. et al. // Polymer. 2017. V. 124. P. 48. https://doi.org/10.1016/j.polymer.2017.07.049
- Xiao S., Hossain M.M., Liu P., Wang H., Hu F. et al. // Mater. Des. 2017. V. 132. P. 419. https://doi.org/10.1016/j.matdes.2017.07.016
- Functional. Polymers / Eds. Abu Jafar M. et al. Cham, Switzerland: Springer Int. Publ., 2018. P. 225. https://doi.org/10.1007/978-3-319-95987-0_7
- Guazzini T., Bronco S., Carignani E. et al. // Eur. Polym. J. 2019. V. 114. P. 298. https://doi.org/10.1016/j.eurpolymj. 2019.02.023
- Krol P. // Prog. Mater. Sci. 2007. V. 52. № 6. P. 915. https://doi.org/10.1016/j.pmatsci.2006.11.001
- Zakharova D.V., Lok’yaeva Z.A., Pavlov A.A., Polezhaev A.V. // Key Eng. Mater. 2021. V. 899. P. 628. https://doi.org/10.4028/www.scientific.net/kem.899.628
- Platonova E.O., Ponomareva P.F., Lokiaeva Z.A. et al. // Polymers. 2022. V. 14. № 24. P. 5394. https://doi.org/10.3390/polym14245394
- Yan Q., Zhou M., Fu H. // J. Mater. Chem. C. 2020. V. 8. № 23. P. 7772. https://doi.org/10.1039/C9TC06765E
- Zhou X., Wang H., Li S. et al. // Eur. Polym. J. 2021. V. 159. P. 110769. https://doi.org/10.1016/j.eurpolymj.2021.110769
- Syed E. A. Master Thesis. Loughborough, UK: Loughborough University, 2021. V. 1. https://doi.org/10.26174/thesis.lboro.15035103
- Zhang, C. et al. // J. Mol. Model. 2010. V. 16. № 8. P. 1391. https://doi.org/10.1007/s00894-010-0645-4
- Luo W. et. al. // Macromolecules. 1997. V. 30. № 15. P. 4405. https://doi.org/10.1021/ma951386e
- Platonova E. et al. // Polymers. 2021. V. 13. № 12. Article 1935. https://doi.org/10.3390/polym13121935
- Bednarczyk P. et al. // J. Appl. Polym. Sci. 2023. V. 140. № 32. Article 54266. https://doi.org/10.1002/app.54266
- Lokiaeva Z.A., Soboleva J.A., Zakharova D.V., Storozhuk I.P. // E3S Web Conf. 2023. V. 413. Article 02036. https://doi.org/10.1051/e3sconf/202341302036
- Venkatesh D., Jaisankar V. // Mater. Today: Proc. 2019. V. 14. Part 2. P. 482. https://doi.org/10.1016/j.matpr.2019.04.171
- Petrova T.V., Tretyakov I.V., Kireynov A.V et al. // Appl. Sci. 2023. V. 13. № 11. Article 6557. https://doi.org/10.3390/app13116557
- Behera P., Raut S., Mondal P. et al. // ACS Appl. Polym. Mater. 2021. V. 3. № 2. P. 847. https://doi.org/10.1021/acsapm.0c01179
- Jiang H., Yan T., Cheng M. et al. // Mater. Horiz. 2025. V. 12. № 2. P. 599. https://doi.org/10.1039/D4MH01129E
Supplementary files


