Protective composite fluoropolymer-containing coatings on ST3 steel formed using cold gas-dynamic spraying technology

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The article presents the results of studying the coatings formed using different methods by means of cold gas-dynamic spraying (CS) on the surface of structural steel St3. Various methods for forming protective polymer-containing coatings are proposed. The composition and morphology of the protective layers are studied using the SEM–EDS analysis method. The anticorrosive properties of the coated samples were studied using the electrochemical impedance spectroscopy and potentiodynamic polarization method during exposure to 3.5 wt.% NaCl solution. It is shown that the inclusion of superdispersed polytetrafluoroethylene (SPTFE) in the coating increases the corrosion resistance of the base copper-zinc layer. The best anticorrosive properties were established for a sample with a basic Cu-Zn CS layer annealed at 500 °C for 1 h, followed by SPTFE treatment and repeated annealing at 350 °C for 1 h. The obtained results indicate that polymer-containing coatings formed by the CS method effectively increase the protective properties of the treated material.

Sobre autores

A. Gnedenkov

Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

Email: asgnedenkov@mail.ru
Vladivostok, Russia

A. Nomerovskii

Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

Email: asgnedenkov@mail.ru
Vladivostok, Russia

A. Tsvetnikov

Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

Email: asgnedenkov@mail.ru
Vladivostok, Russia

S. Sinebryukhov

Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

Email: asgnedenkov@mail.ru
Vladivostok, Russia

V. Buznik

Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

Email: asgnedenkov@mail.ru
Vladivostok, Russia

S. Gnedenkov

Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: asgnedenkov@mail.ru
Vladivostok, Russia

Bibliografia

  1. Авдеев Я.Г., Ненашева Т.А., Лучкин А.Ю., Маршаков А.И., Кузнецов Ю.И. // Хим. физика. 2024. Т. 43. № 1. С. 24. https://doi.org/10.31857/S0207401X24010033
  2. Adasooriya N.D., Hemmingsen T., Pavlou D. // Corros. Rev. 2020. V. 38. № 1. P. 49. https://doi.org/10.1515/CORRREV-2019-0066
  3. Li P., Du M. // Corros. Commun. 2022. V. 7. P. 23. https://doi.org/10.1016/j.corcom.2022.03.005
  4. Zhang W., Yang, S., Geng W., Hu Q., Zhou L.// Mater. Chem. Phys. 2022. V. 288. P. 126409. https://doi.org/10.1016/j.matchemphys.2022.126409
  5. Tahri W., Hu, X., Shi C., Zhang Z. // Constr. Build. Mater. 2021. V. 293. P. 123484. https://doi.org/10.1016/j.conbuildmat.2021.123484
  6. Zhang Y., Yuan R., Yang J., Xiao D., Luo D. et al. // J. Mater. Res. Technol. 2022. V. 20. P. 4077. https://doi.org/10.1016/j.jmrt.2022.08.138
  7. Lazorenko G., Kasprzhitskii A., Nazdracheva T. // Construct. Build.Mater. 2021. V. 288. P. 123115. https://doi.org/10.1016/J.CONBUILDMAT.2021.123115
  8. Karattu V.K., Peringattu K.T., Jayakumar N., Gopalan N.K. // ACS Omega. 2019. V. 4. № 6. P. 10176. https://doi.org/10.1021/acsomega.9b00632
  9. Liao B., Luo Z., Wan S., Chen L. // J. Ind. Eng. Chem. 2022. V. 117. P. 238. https://doi.org/10.1016/j.jiec.2022.10.010
  10. Wang X., Lei Y., Jiang Z.N., Zhang Q.H., Li Y.Y. et al. // Ind. Crops Prod. (China) 2022. V. 188. P. 115680. https://doi.org/10.1016/j.indcrop.2022.115680
  11. Chowdhury M.F.W., Tapia-Bastidas C.V., Hoschke J., Venezuela J., Atrens A. // Intern. J. Hydrogen Energy. 2025. V. 102. P. 181. https://doi.org/10.1016/j.ijhydene.2025.01.018
  12. Mashtalyar D.V., Nadaraia K.V., Imshinetskiy I.M., Sinebryukhov S.L., Gnedenkov S.V. // J. Magnesium Alloys (China). 2022. V. 10. № 4. P. 1033. https://doi.org/10.1016/j.jma.2021.07.020
  13. Parchovianská I., Parchovianský M., Kaňková H., Nowicka A., Galusek D. // Materials (Basel). 2021. V. 14. № 24. P. 7777. https://doi.org/10.3390/ma14247777
  14. Li L., Huang Y., Tang W., Zhang Y., Qian L. // Polymers (Basel). 2022. V. 14. № 18. P. 3722. https://doi.org/10.3390/polym14183722
  15. Makarychev Y.B., Gladkikh N.A., Redkina G.V., Grafov O.Yu., Aliev A.D. et al. // Materials (Basel). 2022. V. 15. № 7. P. 2418. https://doi.org/10.3390/ma15072418
  16. Gnedenkov A.S., Mei D., Lamaka S.V., Sinebryukhov S.L., Mashtalyar D.V., Vyaliy I.E., Zheludkevich M.L., Gnedenkov S.V. // Corros. Sci. 2020. V. 170. P. 108689. https://doi.org/10.1016/j.corsci.2020.108689
  17. Attaei M., Taryba M.G., Shakoor R.A., Kahraman R., Marques A.C. et al. // Ibid. 2022. V. 198. P. 110162. https://doi.org/10.1016/j.corsci.2022.110162
  18. Gnedenkov A.S., Sinebryukhov S.L., Filonina V.S., Plekhova N.G., Gnedenkov S.V. // J. Magnesium Alloys (China). 2022. V. 10. № 12. P. 3589. https://doi.org/10.1016/j.jma.2022.05.002
  19. Ferkous H., Delimi A., Kahlouche A., Boulechfar C., Djellali S. et al. // Polymers (Basel). 2022. V. 14. № 16. P. 3288. https://doi.org/10.3390/polym14163288
  20. Uvida M.C., Almeida A.d.A., Pulcinelli S.H., Santilli C.V., Hammer P. // Ibid. № 17. P. 3474. https://doi.org/10.3390/polym14173474
  21. Rakhadilov B., Pogrebnjak A., Sagdoldina Z., Buitkenov D., Beresnev V. et al. // Materials (Basel). 2022. V. 15. № 21. P. 7696. https://doi.org/10.3390/ma15217696
  22. Dai X., Qian J., Qin J., Yue Y., Zhao Y. et al. // Ibid. № 12. P. 4134. https://doi.org/10.3390/ma15124134
  23. Mohamed A.M.A., Hasan H., Seleman M.M.E., Ahmed E., Saleh S.M. et al. // Ibid. 2021. V. 14. № 21. P. 6358. https://doi.org/10.3390/ma14216358
  24. Tabish M., Zhao J., Wang J., Anjum M.J., Qiang Y. et al. // Prog. Org. Coat. 2022. V. 165. P. 106765. https://doi.org/10.1016/j.porgcoat.2022.106765
  25. Saleh S.M., Alminderej F.M., Mohamed A.M.A. // Materials (Basel). 2022. V. 15. № 23. P. 8674. https://doi.org/10.3390/ma15238674
  26. El-Lateef H.M.A., Gouda M., Khalaf M.M., Al-Shuaibi M.A.A., Mohamed I.M.A., Shalabi K., El-Shishtawy R.M. // Polymers (Basel). 2022. V. 14. № 13. P. 2544. https://doi.org/10.3390/polym14132544
  27. Gouda M., Khalaf M.M., Al-Shuaibi M.A.A., Mohamed I.M.A. et al. // Ibid. № 15. P. 3078. https://doi.org/10.3390/polym14153078
  28. Zanca C., Carbone S., Patella B., Lopresti F., Aiello G. et al. // Ibid. № 18. P. 3915. https://doi.org/10.3390/polym14183915
  29. Sun C., Sun M., Tao T., Qu F., Wang G. et al. // Materials (Basel). 2022. V. 15. № 15. P. 5138. https://doi.org/10.3390/ma15155138
  30. Gouda M., Khalaf M.M., Shalabi K., Al-Omair M.A., El-Lateef H.M. Abd. // Polymers (Basel). 2022. V. 14. № 2. P. 228. https://doi.org/10.3390/polym14020228
  31. Al-Masoud M.A., Khalaf M.M., Heakal F.E.-T., Gouda M., Mohamed I.M.A. et al. // Polymers (Basel). 2022. V. 14. № 21. P. 4734. https://doi.org/10.3390/polym14214734
  32. Li J., Tao Z., Cui J., Shen S., Qiu H. // Ibid. № 19. P. 4067. https://doi.org/10.3390/polym14194067
  33. Hsissou R., Lachhab R., El Magri A., Echihi S., Vanaei H.R. et al. // Ibid. № 15. P. 3100. https://doi.org/10.3390/polym14153100
  34. Hynes N.R.J., Vignesh N.J., Barile C., Velu P.S., Baskaran T. et al. // Ibid. № 9. P. 1700. https://doi.org/10.3390/polym14091700
  35. Gnedenkov A.S., Sinebryukhov S.L., Nomerovskii A.D., Filonina V.S., Ustinov A.Yu., Gnedenkov S.V. // J. Magnesium Alloys (China). 2023. V. 11. № 10. P. 3688. https://doi.org/10.1016/j.jma.2023.07.016
  36. Gnedenkov A.S., Sinebryukhov S.L., Nomerovskii A.D., Marchenko V.S., Ustinov A.Yu., Gnedenkov S.V. // J. Magnesium Alloys (China). 2024. V. 12. № 7. P. 2909. https://doi.org/10.1016/j.jma.2024.07.004
  37. Saarimaa V., Kaleva A., Ismailov A., Laihinen T., Virtanen M. et al. // Arab. J. Chem. 2022. V. 15. № 3. P. 103636. https://doi.org/10.1016/j.arabjc.2021.103636
  38. Gnedenkov A.S., Sinebryukhov S.L., Mashtalyar D.V., Imshinetskiy I.M., Vyaliy I.E., Gnedenkov S.V. // Materials (Basel). 2019. V. 12. № 16. P. 2615. https://doi.org/10.3390/ma12162615
  39. Gnedenkov A.S., Sinebryukhov S.L., Mashtalyar D.V., Gnedenkov S.V. // Solid State Phenom. 2015. V. 245. P. 89. https://doi.org/10.4028/www.scientific.net/SSP.245.89
  40. Sinebryukhov S.L., Gnedenkov A.S., Khrisanfova O.A., Gnedenkov S.V. // Surf. Eng. 2009. V. 25. № 8. P. 565. https://doi.org/10.1179/026708409X363237
  41. Mohedano M., Lopez E., Mingo B., Moon S., Matykina E. et al. // J. Mater. Res. Technol. 2022. V. 21. P. 2061. https://doi.org/10.1016/j.jmrt.2022.10.049
  42. Gnedenkov A.S., Kononenko Y.I., Sinebryukhov S.L., Filonina V.S., Vyaliy I.E., Nomerovskii A.D., Ustinov A.Yu., Gnedenkov S.V. // Materials (Basel). 2023. V. 16. № 6. P. 2215. https://doi.org/10.3390/ma16062215
  43. Гнеденков С.В., Хрисанфова О.А., Синебрюхов С.Л., Пузь А.В., Гнеденков А.С.// Коррозия: материалы, защита. 2007. № 2. С. 20.
  44. Гнеденков С.В., Синебрюхов С.Л., Хрисанфова О.А., Егоркин В.С., Машталяр Д.В., Сидорова М.В., Гнеденков А.С. и др. // Вестн. ДВО РАН. 2010. Т. 153. № 5. С. 35.
  45. Poza P., Garrido-Maneiro M.Á. // Prog. Mater. Sci. 2022. V. 123. P. 100839. https://doi.org/10.1016/j.pmatsci.2021.100839
  46. Assadi H., Gärtner F., Stoltenhoff T., Kreye H. // Acta Mater. 2003. V. 51. № 15. P. 4379. https://doi.org/10.1016/S1359-6454(03)00274-X
  47. Wang N., Liu C., Wang Y., Chen H., Chu X. et al. // Materials (Basel). 2022. V. 15. № 19. P. 7007. https://doi.org/10.3390/ma15197007
  48. Heimann R.B., Kleiman J.I., Litovsky E., Marx S., Ng R. et al. // Surf. Coat. Technol. 2014. V. 252. P. 113. https://doi.org/10.1016/j.surfcoat.2014.04.053
  49. Wu K., Sun W., Tan A.W.-Y., Marinescu I., Liu E. et al. // Ibid. 2021. V. 424. P. 127660. https://doi.org/10.1016/j.surfcoat.2021.127660
  50. Wang Q., Han P., Yin S., Niu W.-J., Zhai L. et al. // Coatings. 2021. V. 11. № 2. P. 206. https://doi.org/10.3390/coatings11020206
  51. Popescu C., Alain S., Courant M., Vardelle A., Denoirjean A. et al. // Eng. Sci. Technol. 2022. V. 35. P. 101194. https://doi.org/10.1016/j.jestch.2022.101194
  52. Zou Y. // Acc. Mater. Res. 2021. V. 2. № 11. P. 1071. https://doi.org/10.1021/accountsmr.1c00138
  53. The Cold Spray Materials Deposition Process: Fundamentals and Applications / Ed. Champagne V.K. Boca Raton: CRC Press, 2007. P. 62. https://doi.org/10.1533/9781845693787.1.62
  54. Witharamage C.S., Alrizqi M.A., Chirstudasjustus J., Darwish A.A., Ansell T. et al. // Corros. Sci. 2022. V. 209. P. 110720. https://doi.org/10.1016/j.corsci.2022.110720
  55. Huang C., List A., Wiehler L., Schulze M., Gärtner F. et al. // Addit. Manuf. 2022. V. 59. P. 103116. https://doi.org/10.1016/j.addma.2022.103116
  56. Egorkin V.S., Medvedev I.M., Sinebryukhov S.L., Vyaliy I.E., Gnedenkov A.S., Nadaraia K.V., Izotov N.V., Mashtalyar D.V., Gnedenkov S.V. // Materials (Basel). 2020. V. 13. № 12. P. 2739. https://doi.org/10.3390/ma13122739
  57. Gnedenkov S.V., Khrisanfova O.A., Sinebryukhov S.L., Puz’ A.V., Gnedenkov A.S. // Mater. Manuf. Process. 2008. V. 23. № 8. P. 879. https://doi.org/10.1080/10426910802385117
  58. Агеев М.В., Гилевич А.В., Егоров Н.В., Петров В.Н. // Хим. физика. 2004. Т. 23. № 9. С. 58.
  59. Игнатьева Л.Н., Мащенко В.А., Горбенко О.М., Бузник В.М. // Хим. физика. 2023. Т. 42. № 11. С. 23. https://doi.org/10.31857/S0207401X23110031
  60. Mashtalyar D.V., Gnedenkov S.V., Sinebryukhov S.L., Imshinetskiy I.M., Gnedenkov A.S., Bouznik V.M. // J. Alloys Compd. 2018. V. 767. P. 353. https://doi.org/10.1016/j.jallcom.2018.07.085

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».